Back to Search Start Over

Predictive coding for motion stimuli in human early visual cortex.

Authors :
Schellekens, Wouter
Wezel, Richard
Petridou, Natalia
Ramsey, Nick
Raemaekers, Mathijs
Source :
Brain Structure & Function. Mar2016, Vol. 221 Issue 2, p879-890. 12p.
Publication Year :
2016

Abstract

The current study investigates if early visual cortical areas, V1, V2 and V3, use predictive coding to process motion information. Previous studies have reported biased visual motion responses at locations where novel visual information was presented (i.e., the motion trailing edge), which is plausibly linked to the predictability of visual input. Using high-field functional magnetic resonance imaging (fMRI), we measured brain activation during predictable versus unpreceded motion-induced contrast changes during several motion stimuli. We found that unpreceded moving dots appearing at the trailing edge gave rise to enhanced BOLD responses, whereas predictable moving dots at the leading edge resulted in suppressed BOLD responses. Furthermore, we excluded biases in directional sensitivity, shifts in cortical stimulus representation, visuo-spatial attention and classical receptive field effects as viable alternative explanations. The results clearly indicate the presence of predictive coding mechanisms in early visual cortex for visual motion processing, underlying the construction of stable percepts out of highly dynamic visual input. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18632653
Volume :
221
Issue :
2
Database :
Academic Search Index
Journal :
Brain Structure & Function
Publication Type :
Academic Journal
Accession number :
113416671
Full Text :
https://doi.org/10.1007/s00429-014-0942-2