Back to Search
Start Over
Developing nitrosocarborane chemistry.
- Source :
-
Dalton Transactions: An International Journal of Inorganic Chemistry . 2/28/2016, Vol. 45 Issue 8, p3635-3647. 13p. - Publication Year :
- 2016
-
Abstract
- The new nitrosocarboranes [1-NO-2-R-1,2-closo-C2B10H10] [R = CH2Cl (1), CH3OCH2 (2) p-MeC6H4 (3), SiMe3 (4) and SiMe2tBu (5)] and [1-NO-7-Ph-1,7-closo-C2B10H10] (6) were synthesised by reaction of the appropriate lithiocarborane in diethyl ether with NOCl in petroleum ether followed by quenching the reaction with aqueous NaHCO3. These bright-blue compounds were characterised spectroscopically and, in several cases, crystallographically including structural determinations of 2 and 6 using crystals grown in situ on the diffractometer from liquid samples. In all cases the nitroso group bonds to the carborane as a 1e substituent (bent C–N–O sequence) and has little or no influence on <δ11B>, the weighted average 11B chemical shift, relative to that in the parent (monosubstituted) carborane. Mono- and dinitroso derivatives of 1,1′-bis(m-carborane), compounds 7 and 8 respectively, were similarly synthesised but attempts to prepare the mononitroso 1,1′-bis(o-carborane) by the same protocol led only to the hydroxylamine species [1-(1′-1′,2′-closo-C2B10H11)-2-N(H)OH-1,2-closo-C2B10H10] (9); the desired compound [1-(1′-1′,2′-closo-C2B10H11)-2-NO-1,2-closo-C2B10H10] (10) was only realised by switching to a non-aqueous work-up. The involvement of water in effecting the net reduction of the NO function in 10 to N(H)OH in 9 was confirmed by a series of experiments involving [1-N(H)OH-2-Ph-1,2-closo-C2B10H10] (11), [1-(1′-2′-D-1′,2′-closo-C2B10H10)-2-D-1,2-closo-C2B10H10] (12) and [1-(1′-2′-D-1′,2′-closo-C2B10H10)-2-N(H)OH-1,2-closo-C2B10H10] (13). It is suggested that during aqueous work-up a water molecule, H-bonded to the acidic C2′H of 10, is “delivered” to the adjacent C2NO unit. The ability of the NO group in nitrosocarboranes to undergo Diels–Alder cycloaddition reactions with cyclic 1,3-dienes was established via the syntheses of [1-(NOC10H14)-1,2-closo-C2B10H11] (14) and [1-(NOC6H8)-2-Ph-1,2-closo-C2B10H10] (15). This strategy was then utilised to prepare derivatives of the elusive dinitroso compounds of [1,2-closo-C2B10H12] and 1,1′-bis(o-carborane) leading to the sterically-crowded products [1,2-(NOC6H8)2-1,2-closo-C2B10H10] (16, prepared as meso and racemic diastereoisomers), [1-{1′-2′-(NOC6H8)-1′,2′-closo-C2B10H10}-2-(NOC6H8)-1,2-closo-C2B10H10] (17) and [1-(1′-1′,2′-closo-C2B10H11)-2-(NOC6H8)-1,2-closo-C2B10H10] (18). [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14779226
- Volume :
- 45
- Issue :
- 8
- Database :
- Academic Search Index
- Journal :
- Dalton Transactions: An International Journal of Inorganic Chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 113183300
- Full Text :
- https://doi.org/10.1039/c5dt04831a