Back to Search Start Over

An Evolutionary Technique for Performance-Energy-Temperature Optimized Scheduling of Parallel Tasks on Multi-Core Processors.

Authors :
Sheikh, Hafiz Fahad
Ahmad, Ishfaq
Fan, Dongrui
Source :
IEEE Transactions on Parallel & Distributed Systems. Mar2016, Vol. 27 Issue 3, p668-681. 14p.
Publication Year :
2016

Abstract

This paper proposes a multi-objective evolutionary algorithm (MOEA)-based task scheduling approach for determining Pareto optimal solutions with simultaneous optimization of performance (P), energy (E ), and temperature (T). Our algorithm includes problem-specific solution encoding, determining the initial population of the solution space, and the genetic operators that collectively work on generating efficient solutions in fast turnaround time. Multiple schedules offer a diverse range of values for makespan, energy consumed, and peak temperature and thus present an efficient way of identifying trade-offs among the desired objectives, for a given application and machine pair. We also present a methodology for selecting one solution from the Pareto front given the user's preference. The proposed algorithm for scheduling tasks to cores achieves three-way optimization with fast turnaround time. The proposed algorithm is advantageous because it reduces both energy and temperature together rather than in isolation. We evaluate the proposed algorithm using implementation and simulation, and compare it with integer linear programming as well as with other scheduling algorithms that are energy- or thermal-aware. The time complexity of the proposed scheme is considerably better than the compared algorithms. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
10459219
Volume :
27
Issue :
3
Database :
Academic Search Index
Journal :
IEEE Transactions on Parallel & Distributed Systems
Publication Type :
Academic Journal
Accession number :
113070582
Full Text :
https://doi.org/10.1109/TPDS.2015.2421352