Back to Search
Start Over
Portfolio optimization with a copula-based extension of conditional value-at-risk.
- Source :
-
Annals of Operations Research . Feb2016, Vol. 237 Issue 1/2, p219-236. 18p. - Publication Year :
- 2016
-
Abstract
- The paper presents a copula-based extension of Conditional Value-at-Risk and its application to portfolio optimization. Copula-based conditional value-at-risk (CCVaR) is a scalar risk measure for multivariate risks modeled by multivariate random variables. It is assumed that the univariate risk components are perfect substitutes, i.e., they are expressed in the same units. CCVaR is a quantile risk measure that allows one to emphasize the consequences of more pessimistic scenarios. By changing the level of a quantile, the measure permits to parameterize prudent attitudes toward risk ranging from the extreme risk aversion to the risk neutrality. In terms of definition, CCVaR is slightly different from popular and well-researched CVaR. Nevertheless, this small difference allows one to efficiently solve CCVaR portfolio optimization problems based on the full information carried by a multivariate random variable by employing column generation algorithm. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 02545330
- Volume :
- 237
- Issue :
- 1/2
- Database :
- Academic Search Index
- Journal :
- Annals of Operations Research
- Publication Type :
- Academic Journal
- Accession number :
- 113040583
- Full Text :
- https://doi.org/10.1007/s10479-014-1625-3