Back to Search
Start Over
A Dynamic Model of pH-Induced Protein G'e Higher Order Structure Changes derived from Mass Spectrometric Analyses.
- Source :
-
Analytical Chemistry . 1/5/2016, Vol. 88 Issue 1, p890-897. 8p. - Publication Year :
- 2016
-
Abstract
- To obtain insight into pH change-driven molecular dynamics, we studied the higher order structure changes of protein G'e at the molecular and amino add residue levels in solution by using nanoESI- and IM-mass spectrometry, CD spectroscopy, and protein chemical modification reactions (protein footprinting). We found a dramatic change of the overall tertiary structure of protein G'e when the pH was changed from neutral to atidic, whereas its secondary structure features remained nearly invariable. Limited proteolysis and surface-topology mapping of protein G'e by fast photochemical oxidation of proteins (FPOP) under neutral and addic conditions reveal areas where higher order conformational changes occur on the amino-acid residue level. Under neutral solution conditions, lower oxidation occurs for residues of the first linker region, whereas greater oxidative modifications occur for amino-acid residues of the IgG-binding domains I and II. We propose a dynamic model of pH-induced structural changes in which protein G'e at neutral pH adopts an overall tight conformation with all four domains packed in a firm assembly, whereas at addic pH, the three IgG-binding domains form an elongated alignment, and the N-terminal, His-tagcarrymg domain unfolds. At the same time the individual IgG-binding domains themselves seem to adopt a more compacted fold. As the secondary structure features are nearly unchanged at either pH, interchange between both conformations is highly reversible, explaining the high reconditioning power of protein G'e-based affinity chromatography columns. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00032700
- Volume :
- 88
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Analytical Chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 112532357
- Full Text :
- https://doi.org/10.1021/acs.analchem.5b03536