Back to Search
Start Over
Source of metabolizable energy affects gene transcription in metabolic pathways in adipose and liver tissue of nonlactating, pregnant dairy cows.
- Source :
-
Journal of Animal Science . Feb2015, Vol. 93 Issue 2, p685-698. 14p. - Publication Year :
- 2015
-
Abstract
- The objective of this experiment was to determine if transcript abundance of genes involved in metabolic pathways in adipose and liver tissue could provide some explanation for the low efficiency with which ME in autumn pasture is used for BW gain. Nonlactating, pregnant (208 ± 19 d of gestation or approximately 75 d precalving) dairy cows (n = 90) were randomly allocated to either a control diet (i.e., offered fresh autumn pasture to maintenance requirements: 0.55 MJ ME/kg of measured metabolic BW [BW0.75] per day) or, in addition to the control diet, 1 of 2 supplement amounts (2.5 and 5.0 kg DM/d) of autumn pasture or 1 of 4 supplementary feeds (i.e., a control and 2 levels of feeding for each of 5 feeds: 11 groups of cows). Along with autumn pasture, evaluated feeds included spring pasture silage, maize silage, maize grain, and palm kernel expeller. Adipose and liver tissues were biopsied in wk 4 of the experiment and transcript abundance of genes involved in metabolic pathways associated with energy metabolism, lipolysis, and lipogenesis was determined. Additional feed, irrespective of type, increased BW gain (P < 0.01) and this effect was reflected in the expression of genes in adipose and liver tissue. However, autumn pasture had lower energy-use efficiency than the other feeds. Genes involved in both lipogenesis (ACACA, THRSP, GPAM, GPD1, and LPL) and lipolysis (PNPLA2) were upregulated (P < 0.05) in adipose tissue in response to increased ME intake/kilogram BW0.75. Hepatic expression of APOA1 decreased and that of APOB increased (P < 0.05) in cows offered maize grain and maize silage (i.e., starch-containing feeds). In comparison, pasture-fed cows demonstrated a degree of uncoupling of the somatotropic axis, with lower hepatic transcript abundance of both GHR1A and IGF-1 compared with cows offered any of the other 4 feeds. Changes to gene transcription indicate a possible molecular mechanism for the poor BW gain evident in ruminants consuming autumn pasture. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00218812
- Volume :
- 93
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Journal of Animal Science
- Publication Type :
- Academic Journal
- Accession number :
- 112258935
- Full Text :
- https://doi.org/10.2527/jas.2014-7978