Back to Search Start Over

Microtexture, nanomineralogy, and local chemistry of cryptocrystalline cosmic spherules.

Authors :
Khisina, N.
Badyukov, D.
Wirth, R.
Source :
Geochemistry International. Jan2016, Vol. 54 Issue 1, p68-77. 10p.
Publication Year :
2016

Abstract

The paper reports scanning electron microscopy (FEG-SEM) and transmission electron microscopy (TEM) data on three cryptocrystalline (CC) cosmic spherules of chondritic composition (Mg/Si ≈ 1) from two collections taken up at glaciers at the Novaya Zemlya and in the area of the Tunguska event. The spherules show 'brickwork' microtextures formed by minute parallel olivine crystals set in glass of pyroxene-plagioclase composition. The bulk-rock silicate chemistry, microtexture, mineralogy, and the chemical composition of the olivine and the local chemistry of the glass in these spherules testify to a chondritic source of the spherules. The solidification of the spherules in the Earth's atmosphere was proved to be a highly unequilibrated process. A metastable state of the material follows, for example, from the occurrence of numerous nanometer-sized SiO globules in the interstitial glass. These globules were formed by liquid immiscibility in the pyroxene-SiO system. Troilite FeS and schreibersite (Fe,Ni)P globules were found in the FeNi metal in one of the spherules, which suggests that the precursor was not chemically modified when melted in the Earth's atmosphere. Our results allowed us to estimate the mineralogy of the precursor material and correlate the CC spherules with the chondrule material of chondrites. The bulk compositions of the spherules are closely similar to those of type-IIA chondrules. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00167029
Volume :
54
Issue :
1
Database :
Academic Search Index
Journal :
Geochemistry International
Publication Type :
Academic Journal
Accession number :
112062678
Full Text :
https://doi.org/10.1134/S0016702916010067