Back to Search Start Over

Direct Evidence for Microdomain-Specific Localization and Remodeling of Functional L-Type Calcium Channels in Rat and Human Atrial Myocytes.

Authors :
Glukhov, Alexey V.
Balycheva, Marina
Sanchez-Alonso, Jose L.
Ilkan, Zeki
Alvarez-Laviada, Anita
Bhogal, Navneet
Diakonov, Ivan
Schobesberger, Sophie
Sikkel, Markus B.
Bhargava, Anamika
Faggian, Giuseppe
Punjabi, Prakash P.
Houser, Steven R.
Gorelik, Julia
Source :
Circulation. 12/22/2015, Vol. 132 Issue 25, p2372-2384. 13p.
Publication Year :
2015

Abstract

<bold>Background: </bold>Distinct subpopulations of L-type calcium channels (LTCCs) with different functional properties exist in cardiomyocytes. Disruption of cellular structure may affect LTCC in a microdomain-specific manner and contribute to the pathophysiology of cardiac diseases, especially in cells lacking organized transverse tubules (T-tubules) such as atrial myocytes (AMs).<bold>Methods and Results: </bold>Isolated rat and human AMs were characterized by scanning ion conductance, confocal, and electron microscopy. Half of AMs possessed T-tubules and structured topography, proportional to cell width. A bigger proportion of myocytes in the left atrium had organized T-tubules and topography than in the right atrium. Super-resolution scanning patch clamp showed that LTCCs distribute equally in T-tubules and crest areas of the sarcolemma, whereas, in ventricular myocytes, LTCCs primarily cluster in T-tubules. Rat, but not human, T-tubule LTCCs had open probability similar to crest LTCCs, but exhibited ≈ 40% greater current. Optical mapping of Ca(2+) transients revealed that rat AMs presented ≈ 3-fold as many spontaneous Ca(2+) release events as ventricular myocytes. Occurrence of crest LTCCs and spontaneous Ca(2+) transients were eliminated by either a caveolae-targeted LTCC antagonist or disrupting caveolae with methyl-β-cyclodextrin, with an associated ≈ 30% whole-cell ICa,L reduction. Heart failure (16 weeks post-myocardial infarction) in rats resulted in a T-tubule degradation (by ≈ 40%) and significant elevation of spontaneous Ca(2+) release events. Although heart failure did not affect LTCC occurrence, it led to ≈ 25% decrease in T-tubule LTCC amplitude.<bold>Conclusions: </bold>We provide the first direct evidence for the existence of 2 distinct subpopulations of functional LTCCs in rat and human AMs, with their biophysical properties modulated in heart failure in a microdomain-specific manner. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00097322
Volume :
132
Issue :
25
Database :
Academic Search Index
Journal :
Circulation
Publication Type :
Academic Journal
Accession number :
111936219
Full Text :
https://doi.org/10.1161/CIRCULATIONAHA.115.018131