Back to Search Start Over

Boiling Heat Transfer and Pressure Drop of a Refrigerant R32 Flowing in a Small Horizontal Tube.

Authors :
Matsuse, Yudai
Enoki, Koji
Mori, Hideo
Kariya, Keishi
Hamamoto, Yoshinori
Source :
Heat Transfer Engineering. 2016, Vol. 37 Issue 7/8, p668-678. 11p. 2 Diagrams, 3 Charts, 9 Graphs.
Publication Year :
2016

Abstract

In this study, experiments were performed to examine characteristics of flow boiling heat transfer and pressure drop of a low global warming potential refrigerant R32 flowing in a horizontal copper circular tube with 1.0 mm inside diameter for the development of a high-performance heat exchanger using small-diameter tubes or minichannels for air conditioning systems. Axially local heat transfer coefficients were measured in the range of mass fluxes from 30 to 400 kg/(m2·s), qualities from 0.05 to 1.0, and heat fluxes from 2 to 24 kW/m2at the saturation temperature of 10°C. Pressure drops were also measured in the rage of mass fluxes from 30 to 400 kg/(m2·s) and qualities from 0.05 to 0.9 at the saturation temperature of 10°C under adiabatic condition. In addition, two-phase flow patterns were observed through a sight glass fixed at the tube exit with a digital camera. The characteristics of boiling heat transfer and pressure drop were clarified based on the measurements and the comparison with data of R410A obtained previously. Also, measured heat transfer coefficients were compared with two existing correlations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01457632
Volume :
37
Issue :
7/8
Database :
Academic Search Index
Journal :
Heat Transfer Engineering
Publication Type :
Academic Journal
Accession number :
111888697
Full Text :
https://doi.org/10.1080/01457632.2015.1067057