Back to Search Start Over

Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means.

Authors :
Li, Jun-Feng
Qian, Wei-Mao
Chu, Yu-Ming
Source :
Journal of Inequalities & Applications. 9/18/2015, Vol. 2015 Issue 1, p1-9. 9p.
Publication Year :
2015

Abstract

In this paper, we present the best possible parameters $\alpha, \beta \in\mathbb{R}$ and $\lambda, \mu\in(1/2, 1)$ such that the double inequalities $\alpha N_{AQ}(a,b)+(1-\alpha)A(a,b)< T^{\ast}(a,b)<\beta N_{AQ}(a,b)+(1-\beta)A(a,b)$, $Q[\lambda a+(1-\lambda)b, \lambda b+(1-\lambda)a]< T^{\ast}(a,b)< Q[\mu a+(1-\mu)b, \mu b+(1-\mu)a] $ hold for all $a, b>0$ with $a\neq b$, where $T^{\ast}(a,b)$, $A(a,b)$, $Q(a,b)$ and $N_{QA}(a,b)$ are the Toader, arithmetic, quadratic, and Neuman means of a and b, respectively. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10255834
Volume :
2015
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Inequalities & Applications
Publication Type :
Academic Journal
Accession number :
109503943
Full Text :
https://doi.org/10.1186/s13660-015-0800-7