Back to Search Start Over

Developing a Robust Surrogate Model of Chemical Flooding Based on the Artificial Neural Network for Enhanced Oil Recovery Implications.

Authors :
Ahmadi, Mohammad Ali
Source :
Mathematical Problems in Engineering. 1/19/2015, Vol. 2015, p1-9. 9p.
Publication Year :
2015

Abstract

Application of chemical flooding in petroleum reservoirs turns into hot topic of the recent researches. Development strategies of the aforementioned technique are more robust and precise when we consider both economical points of view (net present value, NPV) and technical points of view (recovery factor, RF). In current study many attempts have been made to propose predictive model for estimation of efficiency of chemical flooding in oil reservoirs. To gain this end, a couple of swarm intelligence and artificial neural network (ANN) is employed. Also, lucrative and high precise chemical flooding data banks reported in previous attentions are utilized to test and validate proposed intelligent model. According to the mean square error (MSE), correlation coefficient, and average absolute relative deviation, the suggested swarm approach has acceptable reliability, integrity and robustness. Thus, the proposed intelligent model can be considered as an alternative model to predict the efficiency of chemical flooding in oil reservoir when the required experimental data are not available or accessible. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1024123X
Volume :
2015
Database :
Academic Search Index
Journal :
Mathematical Problems in Engineering
Publication Type :
Academic Journal
Accession number :
109272420
Full Text :
https://doi.org/10.1155/2015/706897