Back to Search Start Over

Lost-in-Space Star Identification Using Planar Triangle Principal Component Analysis Algorithm.

Authors :
Zhou, Fuqiang
Ye, Tao
Source :
Mathematical Problems in Engineering. 6/8/2015, Vol. 2015, p1-11. 11p.
Publication Year :
2015

Abstract

It is a challenging task for a star sensor to implement star identification and determine the attitude of a spacecraft in the lost-in-space mode. Several algorithms based on triangle method are proposed for star identification in this mode. However, these methods hold great time consumption and large guide star catalog memory size. The star identification performance of these methods requires improvements. To address these problems, a star identification algorithm using planar triangle principal component analysis is presented here. A star pattern is generated based on the planar triangle created by stars within the field of view of a star sensor and the projection of the triangle. Since a projection can determine an index for a unique triangle in the catalog, the adoption of the k-vector range search technique makes this algorithm very fast. In addition, a sharing star validation method is constructed to verify the identification results. Simulation results show that the proposed algorithm is more robust than the planar triangle and P-vector algorithms under the same conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1024123X
Volume :
2015
Database :
Academic Search Index
Journal :
Mathematical Problems in Engineering
Publication Type :
Academic Journal
Accession number :
109250636
Full Text :
https://doi.org/10.1155/2015/982420