Back to Search Start Over

Toward Reliable Industrial Radiation Thermometry.

Authors :
Yamada, Y.
Ishii, J.
Source :
International Journal of Thermophysics. Aug2015, Vol. 36 Issue 8, p1699-1712. 14p.
Publication Year :
2015

Abstract

Application of radiation thermometry in industrial scenes is rapidly increasing with the widespread use of low-cost infrared thermometers and thermal imagers. However, their performances are not always up to the users' expectations. This is often due to lack of appropriate information on the limitations of the instrument performance and of radiation thermometry itself. In this article, these limitations are disclosed, namely the targeting capabilities of the thermometers including the size-of-source effect of thermal imagers, reflection errors, and unknown emissivity of the measurement object. Attempts made at the NMIJ are introduced, which aim at alleviating the effect of these difficulties. Two-color radiation thermometers have been neglected from the traceability chain and from standardization efforts due to their technical complexity. Recent activities to incorporate them effectively in the calibration chain and to establish international standards are presented. Calibration of low-cost thermometers with a fixed instrumental emissivity setting has been an issue for calibration laboratories. Simple apparatus that enables calibration of such instruments is described. Methods to compensate for unknown emissivities are presented utilizing auxiliary sources to realize a blackbody condition, which is applied to thermal imagers to overcome the problem of the size-of-source effect and reflection error at the same time. Extensions of the technique to objects with specular and scattering surfaces are described. Such efforts are encouraged in the thermometry community since they are essential in establishing an unbroken chain of traceability to the industrial front. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0195928X
Volume :
36
Issue :
8
Database :
Academic Search Index
Journal :
International Journal of Thermophysics
Publication Type :
Academic Journal
Accession number :
109171686
Full Text :
https://doi.org/10.1007/s10765-015-1870-y