Back to Search Start Over

Transmission Dynamics of Resistant Bacteria in a Predator-Prey System.

Authors :
Gao, Xubin
Pan, Qiuhui
He, Mingfeng
Source :
Computational & Mathematical Methods in Medicine. 3/4/2015, Vol. 2015, p1-12. 12p.
Publication Year :
2015

Abstract

This paper discusses the impact on human health caused by the addition of antibiotics in the feed of food animals. We use the established transmission rule of resistant bacteria and combine it with a predator-prey system to determine a differential equations model. The equations have three steady equilibrium points corresponding to three population dynamics states under the influence of resistant bacteria. In order to quantitatively analyze the stability of the equilibrium points, we focused on the basic reproduction numbers. Then, both the local and global stability of the equilibrium points were quantitatively analyzed by using essential mathematical methods. Numerical results are provided to relate our model properties to some interesting biological cases. Finally, we discuss the effect of the two main parameters of the model, the proportion of antibiotics added to feed and the predation rate, and estimate the human health impacts related to the amount of feed antibiotics used. We further propose an approach for the prevention of the large-scale spread of resistant bacteria and illustrate the necessity of controlling the amount of in-feed antibiotics used. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1748670X
Volume :
2015
Database :
Academic Search Index
Journal :
Computational & Mathematical Methods in Medicine
Publication Type :
Academic Journal
Accession number :
109149678
Full Text :
https://doi.org/10.1155/2015/638074