Back to Search Start Over

Warming and increased precipitation enhance phenol oxidase activity in soil while warming induces drought stress in vegetation of an Arctic ecosystem.

Authors :
Seo, Juyoung
Jang, Inyoung
Jung, Ji Young
Lee, Yoo Kyung
Kang, Hojeong
Source :
Geoderma. Dec2015, Vol. 259/260, p347-353. 7p.
Publication Year :
2015

Abstract

Global climate change models predict that surface temperature and precipitation will increase in the Polar Regions. Arctic tundra soils contain a large amount of carbon, which may be vulnerable to decomposition under potential climate change. However, mechanistic understanding of the decomposition process and the consequent changes remains lacking. In the present study, we conducted a manipulation experiment at an arctic soil system in Cambridge Bay, Canada, where temperature and precipitation were increased artificially by installing open top chambers and adding distilled water during growing seasons. After one and half year of environmental manipulation, we investigated extracellular enzyme activities, which are related to decomposition, and analyzed stable isotope signatures (δ 13 C and δ 15 N) in soils and plants, which are related to water and nitrogen availability. Hydrolase (β- d -glucosidase, cellobiase, N-acetyl-glucosidase and aminopeptidase) activity did not differ significantly under different treatments. However, phenol-oxidase showed higher activity under warming combined with increased precipitation than under other treatments. Stable isotope ratio (δ 13 C) in plants revealed that drought stress in vegetation was induced under warming. We concluded that in the long term, climate change may amplify the feedback of soil to climate change in arctic tundra soil. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00167061
Volume :
259/260
Database :
Academic Search Index
Journal :
Geoderma
Publication Type :
Academic Journal
Accession number :
108941517
Full Text :
https://doi.org/10.1016/j.geoderma.2015.03.017