Back to Search
Start Over
DDA validation of the mobility of earthquake-induced landslides.
- Source :
-
Engineering Geology . Aug2015, Vol. 194, p38-51. 14p. - Publication Year :
- 2015
-
Abstract
- This paper studies the run-out of earthquake-induced landslides. There are more than 20 mechanical models to explain long run-out of rapid landslides including some earthquake-induced landslides. However, notably few of them considered the effect of seismic loading on the run-out of landslides. In a previous study, we have proposed a model, which is called the multiplex acceleration model (MAM), to interpret the long run-out mechanism, and a shaking-table test has been performed to verify the MAM. Because the previous MAM is a conceptual model and only a single stone has been examined under sine waves by the shaking-table test, the MAM needs to be extended and further verified. In this paper, the MAM was extended by introducing the movement change that was induced by the so-called trampoline effect of earthquake loading, and the latest practical numerical simulation program, discontinuous deformation analysis (DDA), was used to verify the mobility of earthquake-induced landslides. After a conceptual landslide model was used to verify the effect of seismic loading on the mobility, the Donghekou landslide, which was a typical long run-out landslide that was induced by the 2008 Wenchuan earthquake, was analyzed. The results show that: the seismic loading could be one of the factors that could eventually help increase the run-out of landslides. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00137952
- Volume :
- 194
- Database :
- Academic Search Index
- Journal :
- Engineering Geology
- Publication Type :
- Academic Journal
- Accession number :
- 108844765
- Full Text :
- https://doi.org/10.1016/j.enggeo.2014.08.024