Back to Search Start Over

Biologically active, high levels of interleukin-22 inhibit hepatic gluconeogenesis but do not affect obesity and its metabolic consequences.

Authors :
Ogyi Park
Sung Hwan Ki
Mingjiang Xu
Hua Wang
Dechun Feng
Joseph Tam
Douglas Osei-Hyiaman
George Kunos
Bin Gao
Source :
Cell & Bioscience. 2015, Vol. 5 Issue 1, p1-12. 12p.
Publication Year :
2015

Abstract

Background: Interleukin-22 (IL-22), a cytokine with important functions in anti-microbial defense and tissue repair, has been recently suggested to have beneficial effects in obesity and metabolic syndrome in some but not in other studies. Here, we re-examined the effects of IL-22 on obesity, insulin resistance, and hepatic glucose metabolism. Results: Genetic deletion of IL-22 did not affect high-fat-diet (HFD)-induced obesity and insulin resistance. IL-22 transgenic mice with relatively high levels of circulating IL-22 (∼600 pg/ml) were completely resistant to Concanavalin A-induced liver injury but developed the same degree of high fat diet (HFD)-induced obesity, insulin resistance, and fatty liver as the wild-type littermate controls. Similarly, chronic treatment with recombinant mouse IL-22 (rmIL-22) protein did not affect HFD-induced obesity and the associated metabolic syndrome. In vivo treatment with a single dose of rmIL-22 downregulated the hepatic expression of gluconeogenic genes and subsequently inhibited hepatic gluconeogenesis and reduced blood glucose levels both in HFD-fed and streptozotocin (STZ)-treated mice without affecting insulin production. In vitro exposure of mouse primary hepatocytes to IL-22 suppressed glucose production and the expression of gluconeogenic genes. These inhibitory effects were partially reversed by blocking STAT3 or the AMPK signaling pathway. Conclusion: Biologically active, high levels of IL-22 do not affect obesity and the associated metabolic syndrome. Acute treatment with IL-22 inhibits hepatic gluconeogenesis, which is mediated via the activation of STAT3 and AMPK in hepatocytes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20453701
Volume :
5
Issue :
1
Database :
Academic Search Index
Journal :
Cell & Bioscience
Publication Type :
Academic Journal
Accession number :
108380577
Full Text :
https://doi.org/10.1186/s13578-015-0015-0