Back to Search Start Over

Natural 15N abundances of inorganic nitrogen in soil treated with fertilizer and compost under changing soil moisture regimes.

Authors :
Woo-Jung Choi
Hee-Myong Ro
Sang-Mo Lee
Source :
Soil Biology & Biochemistry. Oct2003, Vol. 35 Issue 10, p1289-1299. 10p.
Publication Year :
2003

Abstract

This study was conducted to examine whether the applications of N-inputs (compost and fertilizer) having different N isotopic compositions (δ15N) produce isotopically different inorganic-N and to investigate the effect of soil moisture regimes on the temporal variations in the δ15N of inorganic-N in soils. To do so, the temporal variations in the concentrations and the δ15N of NH4+ and NO3− in soils treated with two levels (0 and 150 mg N kg−1) of ammonium sulfate (δ15N=−2.3‰) and compost (+13.9‰) during a 10-week incubation were compared by changing soil moisture regime after 6 weeks either from saturated to unsaturated conditions or vice versa. Another incubation study using 15N-labeled ammonium sulfate (3.05 15N atom%) was conducted to estimate the rates of nitrification and denitrification with a numerical model FLUAZ. The δ15N values of NH4+ and NO3− were greatly affected by the availability of substrate for each of the nitrification and denitrification processes and the soil moisture status that affects the relative predominance between the two processes. Under saturated conditions for 6 weeks, the δ15N of NH4+ in soils treated with fertilizer progressively increased from +2.9‰ at 0.5 week to +18.9‰ at 6 weeks due to nitrification. During the same period, NO3− concentrations were consistently low and the corresponding δ15N increased from +16.3 to +39.2‰ through denitrification. Under subsequent water-unsaturated conditions, the NO3− concentrations increased through nitrification, which resulted in the decrease in the δ15N of NO3−. In soils, which were unsaturated for the first 6-weeks incubation, the δ15N of NH4+ increased sharply at 0.5 week due to fast nitrification. On the other hand, the δ15N of NO3− showed the lowest value at 0.5 week due to incomplete nitrification, but after a subsequence increase, they remained stable while nitrification and denitrification were negligible between 1 and 6 weeks. Changing to saturated conditions after the initial 6-weeks incubation, however, increased the δ15N of NO3− progressively with a concurrent decrease in NO3− concentration through denitrification. The differences in δ15N of NO−3 between compost and fertilizer treatments were consistent throughout the incubation period. The δ15N of NO3− increased with the addition of compost (range: +13.0 to +35.4‰), but decreased with the addition of fertilizer (−10.8 to +11.4‰), thus resulting in intermediate values in soils receiving both fertilizer and compost (−3.5 to +20.3‰). Therefore, such differences in δ15N of NO3− observed in this study suggest a possibility that the δ15N of upland-grown plants receiving compost would be higher than those treated with fertilizer because NO3− is the most abundant N for plant uptake in upland soils. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
00380717
Volume :
35
Issue :
10
Database :
Academic Search Index
Journal :
Soil Biology & Biochemistry
Publication Type :
Academic Journal
Accession number :
10741912
Full Text :
https://doi.org/10.1016/S0038-0717(03)00199-8