Back to Search Start Over

MicroRNA-30e* promotes human glioma cell invasiveness in an orthotopic xenotransplantation model by disrupting the NF-κB/IκBα negative feedback loop.

Authors :
Jiang L
Lin C
Song L
Wu J
Chen B
Ying Z
Fang L
Yan X
He M
Li J
Li M
Jiang, Lili
Lin, Chuyong
Song, Libing
Wu, Jueheng
Chen, Baixue
Ying, Zhe
Fang, Lishan
Yan, Xiao
He, Mian
Source :
Journal of Clinical Investigation. Jan2012, Vol. 122 Issue 1, p33-47. 15p.
Publication Year :
2012

Abstract

Constitutive activation of NF-κB is a frequent event in human cancers, playing important roles in cancer development and progression. In nontransformed cells, NF-κB activation is tightly controlled by IκBs. IκBs bind NF-κB in the cytoplasm, preventing it from translocating to the nucleus to modulate gene expression. Stimuli that activate NF-κB signaling trigger IκB degradation, enabling nuclear translocation of NF-κB. Among the genes regulated by NF-κB are those encoding the IκBs, providing a negative feedback loop that limits NF-κB activity. How transformed cells override this NF-κB/IκB negative feedback loop remains unclear. Here, we report in human glioma cell lines that microRNA-30e* (miR-30e*) directly targets the IκBα 3ι-UTR and suppresses IκBα expression. Overexpression of miR-30e* in human glioma cell lines led to hyperactivation of NF-κB and enhanced expression of NF-κB-regulated genes, which promoted glioma cell invasiveness in in vitro assays and in an orthotopic xenotransplantation model. These effects of miR-30e* were shown to be clinically relevant, as miR-30e* was found to be upregulated in primary human glioma cells and correlated with malignant progression and poor survival. Hence, miR-30e* provides an epigenetic mechanism that disrupts the NF-κB/IκBα loop and may represent a new therapeutic target and prognostic marker. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219738
Volume :
122
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Clinical Investigation
Publication Type :
Academic Journal
Accession number :
104439745
Full Text :
https://doi.org/10.1172/JCI58849