Back to Search Start Over

Characterization of carbon anode constituents under CO2 gasification: A try to understand the dusting phenomenon.

Authors :
Chevarin, F.
Lemieux, L.
Picard, D.
Ziegler, D.
Fafard, M.
Alamdari, H.
Source :
Fuel. Sep2015, Vol. 156, p198-210. 13p.
Publication Year :
2015

Abstract

Carbon anodes, used in Hall–Héroult electrolysis process, are subject to carboxy gasification. It is generally thought that the baked pitch of anode is more chemically reactive than coke and thus it preferentially reacts with CO 2 , resulting in premature disintegration of anode. In this study, the apparent reaction rates of anode and its constituents (coke, pitch and butt) were measured separately. The reaction conditions were set to minimize the mass transport limitations (sample size: 2 mg, CO 2 flow rate: 100 ml/min and particle size: about 30 μm). The activation energies of anode, coke, pitch and butt were found to be 192, 175, 207 and 182 kJ/mol, respectively. The evolution of specific surface areas in micro-, meso- and macropores as a function of gasification percentage was revealed using CO 2 and N 2 adsorptions and the ratio of catalyst/inhibitor was obtained using XPS analysis. It was found that the apparent reaction rate of anode and its constituents increased with the progress of the gasification under CO 2 atmosphere at 960 °C. The reaction rate of 0.033 min −1 at 50% of gasification, was obtained for pitch, which is similar to those of anode, coke and butt, suggesting that a pitch, baked separately, is not the most reactive constituent of anode. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00162361
Volume :
156
Database :
Academic Search Index
Journal :
Fuel
Publication Type :
Academic Journal
Accession number :
102696594
Full Text :
https://doi.org/10.1016/j.fuel.2015.04.035