Back to Search Start Over

Capacity of dynamically installed anchors as assessed through field testing and three-dimensional large-deformation finite element analyses.

Authors :
O'Beirne, C.
O'Loughlin, C.D.
Wang, D.
Gaudin, C.
Source :
Canadian Geotechnical Journal. May2015, Vol. 52 Issue 5, p548-562. 15p. 5 Diagrams, 5 Charts, 7 Graphs.
Publication Year :
2015

Abstract

The capacity of dynamically installed anchors in soft normally consolidated clay was examined experimentally through a series of field tests on a 1:20 reduced-scale anchor. The anchors were installed through free fall in water, achieving tip embedment of 1.5-2.6 times the anchor length, before being loaded under undrained conditions at various load inclinations. Vertical anchor capacities were between 2.4 and 4.1 times the anchor dry weight and were satisfactorily predicted using the American Petroleum Institute approach for driven piles. Anchor capacity under inclined loading increased as the load inclination approached horizontal; the field data indicated this increase to be up to 30% for the minimum achievable inclination of about 20° to the horizontal. Corresponding large-deformation finite element analyses showed a similar response, with the maximum capacity occurring at a load inclination between 30° and 45° to the horizontal. The finite element results demonstrate that, for the anchor geometry considered, an inclined load at the anchor padeye could be decomposed into ultimate vertical and moment loading at the anchor centroid. The establishment of a vertical and moment loading yield envelope for the geometry investigated forms the basis of a simple design procedure presented in the paper. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00083674
Volume :
52
Issue :
5
Database :
Academic Search Index
Journal :
Canadian Geotechnical Journal
Publication Type :
Academic Journal
Accession number :
102288642
Full Text :
https://doi.org/10.1139/cgj-2014-0209