Back to Search Start Over

Flows and mixing in channels with misaligned superhydrophobic walls.

Authors :
Nizkaya, Tatiana V.
Asmolov, Evgeny S.
Jiajia Zhou
Schmid, Friederike
Vinogradova, Olga I.
Source :
Physical Review E: Statistical, Nonlinear & Soft Matter Physics. Mar2015, Vol. 91 Issue 3-B, p1-7. 7p.
Publication Year :
2015

Abstract

Aligned superhydrophobic surfaces with the same texture orientation reduce drag in the channel and generate secondary flows transverse to the direction of the applied pressure gradient. Here we show that a transverse shear can be easily generated by using superhydrophobic channels with misaligned textured surfaces. We propose a general theoretical approach to quantify this transverse flow by introducing the concept of an effective shear tensor. To illustrate its use, we present approximate theoretical solutions and Dissipative Particle Dynamics simulations for striped superhydrophobic channels. Our results demonstrate that the transverse shear leads to complex flow patterns, which provide a new mechanism of a passive vertical mixing at the scale of a texture period. Depending on the value of Reynolds number two different scenarios occur. At relatively low Reynolds number the flow represents a transverse shear superimposed with two corotating vortices. For larger Reynolds number these vortices become isolated, by suppressing fluid transport in the transverse direction. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15393755
Volume :
91
Issue :
3-B
Database :
Academic Search Index
Journal :
Physical Review E: Statistical, Nonlinear & Soft Matter Physics
Publication Type :
Academic Journal
Accession number :
102232859
Full Text :
https://doi.org/10.1103/PhysRevE.91.033020