Back to Search Start Over

Comparison of the Antennal Sensilla Ultrastructure of Two Cryptic Species in Bemisia tabaci.

Authors :
Zhang, Xiao-Man
Wang, Su
Li, Shu
Luo, Chen
Li, Yuan-Xi
Zhang, Fan
Source :
PLoS ONE. Mar2015, Vol. 10 Issue 3, p1-12. 12p.
Publication Year :
2015

Abstract

Bemisia tabaci is an important agricultural pest with worldwide distribution and host preference. Therefore, understanding the biology of this pest is important to devise specific pest control strategies. The antennae of herbivorous insects play an important role in the identification of hosts using plant volatiles. To understand the features of antennae in B. tabaci MEAM 1(formerly known as biotype ‘B’) and MED (formerly known as biotype ‘Q’), the morphology and distribution of the antennal sensilla were examined using scanning electron micrographs. The results showed that the average antennae length in MEAM 1 was longer than MED. No differences were observed in the number and distribution of antennal sensilla in MEAM 1 and MED antennae; each antenna had nine different types of sensilla. Both cryptic species possessed Microtrichia, Grooved surface trichodea sensilla, Chaetae sensilla, Coeloconic sensillaⅠandⅡ, Basiconic sensilla Ⅰ, Ⅱ and Ⅲ and Finger-like sensilla. This is the first report of Grooved surface trichodea sensilla and Basiconic sensilla Ⅱ on B. tabaci flies. The numbers of Chaetae sensilla were different in the females and males of MEAM 1 and MED, which females having 5 and males containing 7. The surface structure of Basiconic sensilla Ⅰ was different with MEAM 1 showing a multiple-pitted linen surface and MED showing a multiple-pitted pocking surface. Basiconic sensillaⅡ were double in one socket with the longer one having a multiple-pitted surface and the shorter one with a smooth surface. Basiconic Ⅲ and Finger-like sensillae were longer in MEAM 1 antennae than in MED antennae. Our results are expected to further the studies that link morphological characteristics to insect behavior and help devise strategies to control insect pests. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
10
Issue :
3
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
101837559
Full Text :
https://doi.org/10.1371/journal.pone.0121820