Back to Search
Start Over
On parameter derivatives of a family of polynomials in two variables.
- Source :
-
Applied Mathematics & Computation . Apr2015, Vol. 256, p769-777. 9p. - Publication Year :
- 2015
-
Abstract
- The purpose of the present paper is to give the parameter derivative representations of the form ∂ P n , k ( λ ; x , y ) ∂ λ = ∑ m = 0 n - 1 ∑ j = 0 m d n , j , m P m , j ( λ ; x , y ) + ∑ j = 0 k e n , j , k P n , j ( λ ; x , y ) for a family of orthogonal polynomials of variables x and y , with λ being a parameter and 0 ⩽ k ⩽ n ; n , k = 0 , 1 , 2 , … . First, we shall present the representations of the parameter derivatives of the generalized Gegenbauer polynomials C n ( λ , μ ) ( x ) with the help of the parameter derivatives of the classical Jacobi polynomials P n ( α , β ) ( x ) , i.e. ∂ ∂ α P n ( α , β ) ( x ) and ∂ ∂ β P n ( α , β ) ( x ) . Then, by using these derivatives, we investigate the parameter derivatives for two-variable analogues of the generalized Gegenbauer polynomials. Furthermore, we discuss orthogonality properties of the parametric derivatives of these polynomials. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00963003
- Volume :
- 256
- Database :
- Academic Search Index
- Journal :
- Applied Mathematics & Computation
- Publication Type :
- Academic Journal
- Accession number :
- 101342519
- Full Text :
- https://doi.org/10.1016/j.amc.2015.01.069