Back to Search
Start Over
Stochastic Query Covering for Fast Approximate Document Retrieval.
- Source :
-
ACM Transactions on Information Systems . 2015, Vol. 33 Issue 2, p1-35. 35p. - Publication Year :
- 2015
-
Abstract
- We design algorithms that, given a collection of documents and a distribution over user queries, return a small subset of the document collection in such a way that we can efficiently provide high-quality answers to user queries using only the selected subset. This approach has applications when space is a constraint or when the query-processing time increases significantly with the size of the collection. We study our algorithms through the lens of stochastic analysis and prove that even though they use only a small fraction of the entire collection, they can provide answers to most user queries, achieving a performance close to the optimal. To complement our theoretical findings, we experimentally show the versatility of our approach by considering two important cases in the context of Web search. In the first case, we favor the retrieval of documents that are relevant to the query, whereas in the second case we aim for document diversification. Both the theoretical and the experimental analysis provide strong evidence of the potential value of query covering in diverse application scenarios. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10468188
- Volume :
- 33
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- ACM Transactions on Information Systems
- Publication Type :
- Academic Journal
- Accession number :
- 101324785
- Full Text :
- https://doi.org/10.1145/2699671