Back to Search Start Over

Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid 4He.

Authors :
Mateo, David
Eloranta, Jussi
Williams, Gary A.
Source :
Journal of Chemical Physics. 2015, Vol. 142 Issue 6, p1-9. 9p. 1 Chart, 7 Graphs.
Publication Year :
2015

Abstract

The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He3+, He* (³S), He2* (³Σu), and e-) with quantized rectilinear vortex lines in superfluid 4He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He*. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
142
Issue :
6
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
101021538
Full Text :
https://doi.org/10.1063/1.4907597