Back to Search Start Over

Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models.

Authors :
Hadjidoukas, P.E.
Angelikopoulos, P.
Papadimitriou, C.
Koumoutsakos, P.
Source :
Journal of Computational Physics. Mar2015, Vol. 284, p1-21. 21p.
Publication Year :
2015

Abstract

We present Π4U, 1 an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219991
Volume :
284
Database :
Academic Search Index
Journal :
Journal of Computational Physics
Publication Type :
Academic Journal
Accession number :
100759628
Full Text :
https://doi.org/10.1016/j.jcp.2014.12.006