Back to Search Start Over

Molecular Targeting of the Oncoprotein PLK1 in Pediatric Acute Myeloid Leukemia: RO3280, a Novel PLK1 Inhibitor, Induces Apoptosis in Leukemia Cells.

Authors :
Na-Na Wang
Zhi-Heng Li
He Zhao
Yan-Fang Tao
Li-Xiao Xu
Jun Lu
Lan Cao
Xiao-Juan Du
Li-Chao Sun
Wen-Li Zhao
Pei-Fang Xiao
Fang Fang
Guang-Hao Su
Yan-Hong Li
Gang Li
Yi-Ping Li
Yun-Yun Xu
Hui-Ting Zhou
Yi Wu
Mei-Fang Jin
Source :
International Journal of Molecular Sciences. 2015, Vol. 16 Issue 1, p1266-1292. 27p. 1 Black and White Photograph, 7 Charts, 6 Graphs.
Publication Year :
2015

Abstract

Polo-like kinase 1 (PLK1) is highly expressed in many cancers and therefore a biomarker of transformation and potential target for the development of cancer-specific small molecule drugs. RO3280 was recently identified as a novel PLK1 inhibitor; however its therapeutic effects in leukemia treatment are still unknown. We found that the PLK1 protein was highly expressed in leukemia cell lines as well as 73.3% (11/15) of pediatric acute myeloid leukemia (AML) samples. PLK1 mRNA expression was significantly higher in AML samples compared with control samples (82.95 ± 110.28 vs. 6.36 ± 6.35; p < 0.001). Kaplan-Meier survival analysis revealed that shorter survival time correlated with high tumor PLK1 expression (p = 0.002). The 50% inhibitory concentration (IC50) of RO3280 for acute leukemia cells was between 74 and 797 nM. The IC50 of RO3280 in primary acute lymphocytic leukemia (ALL) and AML cells was between 35.49 and 110.76 nM and 52.80 and 147.50 nM, respectively. RO3280 induced apoptosis and cell cycle disorder in leukemia cells. RO3280 treatment regulated several apoptosis-associated genes. The regulation of DCC, CDKN1A, BTK, and SOCS2 was verified by western blot. These results provide insights into the potential use of RO3280 for AML therapy; however, the underlying mechanisms remain to be determined. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
16
Issue :
1
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
100644706
Full Text :
https://doi.org/10.3390/ijms16011266