Back to Search Start Over

The Research of Nanoparticle and Microparticle Hydroxyapatite Amendment in Multiple Heavy Metals Contaminated Soil Remediation.

Authors :
Zhangwei Li
Man-man Zhou
Weidian Lin
Source :
Journal of Nanomaterials. 2014, p1-8. 8p.
Publication Year :
2014

Abstract

It was believed that when hydroxyapatite (HAP) was used to remediate heavy metal-contaminated soils, its effectiveness seemed likely to be affected by its particle size. In this study, a pot trial was conducted to evaluate the efficiency of two particle sizes of HAP: nanometer particle size ofHAP (nHAP) and micrometer particle size ofHAP (mHAP) induced metal immobilization in soils. Both mHAP and nHAP were assessed for their ability to reduce lead (Pb), zinc (Zn), copper (Cu), and chromium (Cr) bioavailability in an artificially metal-contaminated soil. The pakchoi (Brassica chinensis L.) uptake and soil sequential extraction method were used to determine the immobilization and bioavailability of Pb, Zn, Cu, and Cr. The results indicated that both mHAP and nHAP had significant effect on reducing the uptake of Pb, Zn, Cu, and Cr by pakchoi. Furthermore, both mHAP and nHAP were efficient in covering Pb, Zn, Cu, and Cr from nonresidual into residual forms. However, mHAP was superior to nHAP in immobilization of Pb, Zn, Cu, and Cr in metal-contaminated soil and reducing the Pb, Zn, Cu, and Cr utilized by pakchoi. The results suggested that mHAP had the better effect on remediation multiple metal-contaminated soils than nHAP and was more suitable for applying in in situ remediation technology. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16874110
Database :
Academic Search Index
Journal :
Journal of Nanomaterials
Publication Type :
Academic Journal
Accession number :
100530435
Full Text :
https://doi.org/10.1155/2014/168418