Back to Search Start Over

Recessive solutions for nonoscillatory discrete symplectic systems.

Authors :
Šepitka, Peter
Šimon Hilscher, Roman
Source :
Linear Algebra & its Applications. Mar2015, Vol. 469, p243-275. 33p.
Publication Year :
2015

Abstract

In this paper we introduce a new concept of a recessive solution for discrete symplectic systems, which does not require any eventual controllability assumption. We prove that the existence of a recessive solution is equivalent to the nonoscillation of the system and that recessive solutions can have any rank between explicitly given lower and upper bounds. The smallest rank corresponds to the minimal recessive solution, which is unique up to a right nonsingular multiple, while the largest rank yields the traditional maximal recessive solution. We also present a method for constructing some (but not all) recessive solutions having a block diagonal structure from systems in lower dimension. Our results are new even for special discrete symplectic systems, such as for even order Sturm–Liouville difference equations and linear Hamiltonian difference systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00243795
Volume :
469
Database :
Academic Search Index
Journal :
Linear Algebra & its Applications
Publication Type :
Academic Journal
Accession number :
100427635
Full Text :
https://doi.org/10.1016/j.laa.2014.11.029