1. Genome-wide association of yield traits in a nested association mapping population of barley reveals new gene diversity for future breeding.
- Author
-
Sharma, Rajiv, Draicchio, Fulvia, Flavell, Andrew J, Bull, Hazel, Thomas, William T B, Herzig, Paul, Maurer, Andreas, and Pillen, Klaus
- Subjects
- *
BARLEY yields , *GENOMES , *PLANT population genetics , *BARLEY breeding , *PHENOTYPES , *SINGLE nucleotide polymorphisms - Abstract
To explore wild barley as a source of useful alleles for yield improvement in breeding, we have carried out a genome-wide association scan using the nested association mapping population HEB-25, which contains 25 diverse exotic barley genomes superimposed on an ~70% genetic background of cultivated barley. A total of 1420 HEB-25 lines were trialled for nine yield-related grain traits for 2 years in Germany and Scotland, with varying N fertilizer application. The phenotypic data were related to genotype scores for 5398 gene-based single nucleotide polymorphism (SNP) markers. A total of 96 quantitative trait locus (QTL) regions were identified across all measured traits, the majority of which co-localize with known major genes controlling flowering time (Ppd-H2 , HvCEN , HvGI , VRN-H1 , and VRN-H3) and spike morphology (VRS3 , VRS1 , VRS4 , and INT-C) in barley. Fourteen QTL hotspots, with at least three traits coinciding, were also identified, several of which co-localize with barley orthologues of genes controlling grain dimensions in rice. Most of the allele effects are specific to geographical location and/or exotic parental genotype. This study shows the existence of beneficial alleles for yield-related traits in exotic barley germplasm and provides candidate alleles for future improvement of these traits by the breeder. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF