6 results on '"tumor cell stemness"'
Search Results
2. The Human Soluble NKG2D Ligand Differentially Impacts Tumorigenicity and Progression in Temporal and Model-Dependent Modes.
- Author
-
Serritella, Anthony V., Saenz-Lopez Larrocha, Pablo, Dhar, Payal, Liu, Sizhe, Medd, Milan M., Jia, Shengxian, Cao, Qi, and Wu, Jennifer D.
- Subjects
TUMOR growth ,KILLER cells ,T cells ,TUMOR markers ,CANCER invasiveness ,PROGRAMMED cell death 1 receptors - Abstract
NKG2D is an activating receptor expressed by all human NK cells and CD8 T cells. Harnessing the NKG2D/NKG2D ligand axis has emerged as a viable avenue for cancer immunotherapy. However, there is a long-standing controversy over whether soluble NKG2D ligands are immunosuppressive or immunostimulatory, originating from conflicting data generated from different scopes of pre-clinical investigations. Using multiple pre-clinical tumor models, we demonstrated that the impact of the most characterized human solid tumor-associated soluble NKG2D ligand, the soluble MHC I chain-related molecule (sMIC), on tumorigenesis depended on the tumor model being studied and whether the tumor cells possessed stemness-like properties. We demonstrated that the potential of tumor formation or establishment depended upon tumor cell stem-like properties irrespective of tumor cells secreting the soluble NKG2D ligand sMIC. Specifically, tumor formation was delayed or failed if sMIC-expressing tumor cells expressed low stem-cell markers; tumor formation was rapid if sMIC-expressing tumor cells expressed high stem-like cell markers. However, once tumors were formed, overexpression of sMIC unequivocally suppressed tumoral NK and CD8 T cell immunity and facilitated tumor growth. Our study distinguished the differential impacts of soluble NKG2D ligands in tumor formation and tumor progression, cleared the outstanding controversy over soluble NKG2D ligands in modulating tumor immunity, and re-enforced the viability of targeting soluble NKG2D ligands for cancer immunotherapy for established tumors. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. The Human Soluble NKG2D Ligand Differentially Impacts Tumorigenicity and Progression in Temporal and Model-Dependent Modes
- Author
-
Anthony V. Serritella, Pablo Saenz-Lopez Larrocha, Payal Dhar, Sizhe Liu, Milan M. Medd, Shengxian Jia, Qi Cao, and Jennifer D. Wu
- Subjects
soluble NKG2D ligands ,tumor cell stemness ,tumorigenicity ,NK cells ,tumor immunity ,Biology (General) ,QH301-705.5 - Abstract
NKG2D is an activating receptor expressed by all human NK cells and CD8 T cells. Harnessing the NKG2D/NKG2D ligand axis has emerged as a viable avenue for cancer immunotherapy. However, there is a long-standing controversy over whether soluble NKG2D ligands are immunosuppressive or immunostimulatory, originating from conflicting data generated from different scopes of pre-clinical investigations. Using multiple pre-clinical tumor models, we demonstrated that the impact of the most characterized human solid tumor-associated soluble NKG2D ligand, the soluble MHC I chain-related molecule (sMIC), on tumorigenesis depended on the tumor model being studied and whether the tumor cells possessed stemness-like properties. We demonstrated that the potential of tumor formation or establishment depended upon tumor cell stem-like properties irrespective of tumor cells secreting the soluble NKG2D ligand sMIC. Specifically, tumor formation was delayed or failed if sMIC-expressing tumor cells expressed low stem-cell markers; tumor formation was rapid if sMIC-expressing tumor cells expressed high stem-like cell markers. However, once tumors were formed, overexpression of sMIC unequivocally suppressed tumoral NK and CD8 T cell immunity and facilitated tumor growth. Our study distinguished the differential impacts of soluble NKG2D ligands in tumor formation and tumor progression, cleared the outstanding controversy over soluble NKG2D ligands in modulating tumor immunity, and re-enforced the viability of targeting soluble NKG2D ligands for cancer immunotherapy for established tumors.
- Published
- 2024
- Full Text
- View/download PDF
4. Transcription Factor ELK3 Promotes Stemness and Oxaliplatin Resistance of Glioma Cells by Regulating RNASEH2A.
- Author
-
Mei, Yimin, Chen, Duoning, He, Shike, Ye, Jinping, Luo, Ming, Wu, Qiangjun, and Huang, Yuan
- Subjects
- *
GLIOMAS , *TRANSCRIPTION factors , *PLATINUM group , *BRAIN tumors , *OXALIPLATIN - Abstract
Oxaliplatin is a member of the platinum group that is often used to treat glioma, a common type of malignant brain tumor, though it does not come with desirable and notable effects. This study attempted to investigate how ELK3 impacts the oxaliplatin resistance of glioma cells and its molecular mechanism. Bioinformatics analysis was employed to screen mRNAs with differential expression in glioma cells and predict the possible regulator downstream. We used qRT-PCR to detect the expression of ELK3 and RNASEH2A. Dual-luciferase and ChIP assays were adopted to reassure the regulatory relationship between the two. We also evaluated cell viability and sphere formation efficiency through CCK-8 and sphere formation assay and calculated the IC50 value by using CCK-8 assay. The expression of stemness-related proteins (ALDH1 and Nanog) was assessed through western blot. Glioma cells and tissues presented a significantly high expression of ELK3, the knock-down of which would reduce the cell viability, stemness and oxaliplatin resistance dramatically. Bioinformatics analysis predicted RNASEH2A to be the downstream regulator of ELK3. RNASEH2A was remarkably upregulated in glioma tissue and cells. The results from dual luciferase assay and ChIP experiment verified the binding relationship between RNASEH2A promoter region and ELK3. Then through rescue experiments, we confirmed that overexpression of RNASEH2A could compensate for the inhibition of glioma cell progression resulting from the knock-down of ELK3. ELK3 could promote stemness and oxaliplatin resistance of glioma cells by upregulating RNASEH2A, indicating that targeting ELK3/RNASEH2A axis may be a possible solution to overcome oxaliplatin resistance of glioma cells. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
5. Reconstruction and Analysis of the Immune-Related LINC00987/A2M Axis in Lung Adenocarcinoma
- Author
-
Jiakang Ma, Xiaoyan Lin, Xueting Wang, Qingqing Min, Tonglian Wang, and Chaozhi Tang
- Subjects
eRNA ,LUAD ,LINC00987/A2M axis ,immune cell infiltration ,tumor hypoxia ,tumor cell stemness ,Biology (General) ,QH301-705.5 - Abstract
Enhancer RNAs (eRNAs) participate in tumor growth and immune regulation through complex signaling pathways. However, the immune-related function of the eRNA-mRNA axis in lung adenocarcinoma (LUAD) is unclear. Data on the expression of eRNAs and mRNAs were downloaded from The Cancer Genome Atlas, GEO, and UCSC Xena, including LUAD, and pan-cancer clinical data and mutational information. Immune gene files were obtained from ImmLnc and ImmPort databases. Survival indices, including relapse-free and overall survival, were analyzed using the Kaplan–Meier and log-rank methods. The level of immune cell infiltration, degree of tumor hypoxia, and tumor cell stemness characteristics were quantified using the single-sample gene set enrichment analysis algorithm. The immune infiltration score and infiltration degree were evaluated using the ESTIMATE and CIBERSORT algorithms. The tumor mutation burden and microsatellite instability were examined using the Spearman test. The LUAD-associated immune-related LINC00987/A2M axis was down-regulated in most cancer types, indicating poor survival and cancer progression. Immune cell infiltration was closely related to abnormal expression of the LINC00987/A2M axis, linking its expression to a possible evaluation of sensitivity to checkpoint inhibitors and response to chemotherapy. Abnormal expression of the LINC00987/A2M axis was characterized by heterogeneity in the degree of tumor hypoxia and stemness characteristics. The abnormal distribution of immune cells in LUAD was also verified through pan-cancer analysis. Comprehensive bioinformatic analysis showed that the LINC00987/A2M axis is a functional and effective tumor suppressor and biomarker for assessing the immune microenvironment and prognostic and therapeutic evaluations of LUAD.
- Published
- 2021
- Full Text
- View/download PDF
6. [Matrine suppresses stemness of hepatocellular carcinoma cells by regulating β-catenin signaling pathway].
- Author
-
Dai M, Cai Z, Chen N, Li J, Wen J, Tan L, and Guo D
- Subjects
- Carcinoma, Hepatocellular drug therapy, Cell Line, Tumor, Cell Proliferation, Humans, Liver Neoplasms drug therapy, beta Catenin metabolism, Matrines, Alkaloids pharmacology, Carcinoma, Hepatocellular pathology, Liver Neoplasms pathology, Neoplastic Stem Cells drug effects, Quinolizines pharmacology, Wnt Signaling Pathway drug effects
- Abstract
Objective: To explore the effects of matrine on the proliferation, tumor cell stemness, β-catenin transcriptional activity and AKT/GSK3β/β-catenin signaling pathway in human hepatocellular carcinoma (HCC) HepG2 and Huh7 cells., Methods: The proliferation and colony formation ability of HepG2 and Huh7 cells treated with 200, 400, and 800 μg/mL matrine were evaluated with MTT assay and colony formation assay, respectively. Real-time quantitative PCR was performed to detect the mRNA expressions of CD90, epithelial cell adhesion molecule (EpCAM) and CD133, and dual-luciferase assay was used to detect the transcriptional activity of β-catenin in the treated cells. The effects of matrine on the expressions of protein kinase B (AKT), P-AKT, GSK-3β, P-GSK-3β, P-β-catenin and β-catenin proteins in the Wnt/β-catenin signaling pathway were assessed using Western blotting., Results: Matrine inhibited the proliferation of the two HCC cell lines in a time- and concentration-dependent manner. The half-inhibitory concentrations of matrine were 2369, 1565 and 909.1 μg/mL at 24, 48 and 72 h in HepG2 cells, respectively, and were 1355, 781.8, and 612.8 μg/mL in Huh7 cells, respectively. Matrine concentrationdependently suppressed colony formation of the HCC cells, producing significant inhibitory effects at 400 μg/mL P < 0.01) and 800 μg/mL P < 0.001) in HepG2 cells and at 200 μg/mL P < 0.05), 400 μg/mL P < 0.01), and 800 μg/mL P < 0.001) in Huh7 cells. Matrine at 400 and 800 μg/mL significantly inhibited the mRNA expression of CD90, EpCAM and CD133 and the transcriptional level of β-catenin in both HepG2 and Huh7 cells P < 0.05 or 0.01). Matrine at 400 and 800 μg/mL also significantly decreased the protein levels of β-catenin, P-AKT and P-GSK-3β and increased the phosphorylation level of β-catenin in both of the cell lines., Conclusions: Matrine inhibits the proliferation, colony formation, and the expressions of tumor stem cell markers CD90, EpCAM and CD133 in both HepG2 and Huh7 cells probably by inhibiting Wnt/β-catenin signaling pathway and the transcriptional activity ofβ-catenin.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.