6 results on '"topological criteria"'
Search Results
2. Hybrid geometry / topology based mesh segmentation for reverse engineering
- Author
-
Universidad EAFIT. Departamento de Ciencias, Matemáticas y Aplicaciones, Mejia D., Ruiz-Salguero O., Sánchez J.R., Posada J., Moreno A., Cadavid C.A., Universidad EAFIT. Departamento de Ciencias, Matemáticas y Aplicaciones, Mejia D., Ruiz-Salguero O., Sánchez J.R., Posada J., Moreno A., and Cadavid C.A.
- Abstract
Mesh segmentation and parameterization are crucial for Reverse Engineering (RE). Bijective parameterizations of the sub-meshes are a sine-qua-non test for segmentation. Current segmentation methods use either (1) topologic or (2) geometric criteria to partition the mesh. Reported topology-based segmentations produce large sub-meshes which reject parameterizations. Geometry-based segmentations are very sensitive to local variations in dihedral angle or curvatures, thus producing an exaggerated large number of small sub-meshes. Although small sub-meshes accept nearly isometric parameterizations, this significant granulation defeats the intent of synthesizing a usable Boundary Representation (compulsory for RE). In response to these limitations, this article presents an implementation of a hybrid geometry / topology segmentation algorithm for mechanical workpieces. This method locates heat transfer constraints (topological criterion) in low frequency neighborhoods of the mesh (geometric criterion) and solves for the resulting temperature distribution on the mesh. The mesh partition dictated by the temperature scalar map results in large, albeit parameterizable, sub-meshes. Our algorithm is tested with both benchmark repository and physical piece scans data. The experiments are successful, except for the well - known cases of topological cylinders, which require a user - introduced boundary along the cylinder generatrices. © 2018 Elsevier Ltd
- Published
- 2021
3. Hybrid geometry / topology based mesh segmentation for reverse engineering
- Author
-
Universidad EAFIT. Departamento de Ingeniería Mecánica, Laboratorio CAD/CAM/CAE, Mejia D., Ruiz-Salguero O., Sánchez J.R., Posada J., Moreno A., Cadavid C.A., Universidad EAFIT. Departamento de Ingeniería Mecánica, Laboratorio CAD/CAM/CAE, Mejia D., Ruiz-Salguero O., Sánchez J.R., Posada J., Moreno A., and Cadavid C.A.
- Abstract
Mesh segmentation and parameterization are crucial for Reverse Engineering (RE). Bijective parameterizations of the sub-meshes are a sine-qua-non test for segmentation. Current segmentation methods use either (1) topologic or (2) geometric criteria to partition the mesh. Reported topology-based segmentations produce large sub-meshes which reject parameterizations. Geometry-based segmentations are very sensitive to local variations in dihedral angle or curvatures, thus producing an exaggerated large number of small sub-meshes. Although small sub-meshes accept nearly isometric parameterizations, this significant granulation defeats the intent of synthesizing a usable Boundary Representation (compulsory for RE). In response to these limitations, this article presents an implementation of a hybrid geometry / topology segmentation algorithm for mechanical workpieces. This method locates heat transfer constraints (topological criterion) in low frequency neighborhoods of the mesh (geometric criterion) and solves for the resulting temperature distribution on the mesh. The mesh partition dictated by the temperature scalar map results in large, albeit parameterizable, sub-meshes. Our algorithm is tested with both benchmark repository and physical piece scans data. The experiments are successful, except for the well - known cases of topological cylinders, which require a user - introduced boundary along the cylinder generatrices. © 2018 Elsevier Ltd
- Published
- 2021
4. Martensitic transformations in ‘unfamiliar’ systems
- Author
-
Pond, R.C., Chai, Y.W., and Celotto, S.
- Subjects
- *
CRYSTALLOGRAPHY , *PHENOMENOLOGICAL theory (Physics) , *TEMPERATURE , *ALLOYS - Abstract
In stiff engineering materials, martensitic transformations are shear-dominant diffusionless processes, and their crystallographic features can be successfully predicted using the phenomenological theory of martensite crystallography (PTMC). Recently, an alternative approach has been developed wherein the interface structure is modelled in terms of interfacial dislocations. This model, referred to as the topological model (TM), provides insight into the transformation process and identifies a set of five criteria that must be met for a transformation to be diffusionless. In the case of stiff engineering materials, the crystallographic predictions of the PTMC and TM are very similar. However, the TM enables a broader range of transformations to be treated, and two examples of ‘unusual’ martensites are presented here. The first is a diffusionless transformation in a small elastically soft protein crystal. The second is a transformation in a prospective high-temperature engineering alloy which exhibits the characteristic crystallographic features of martensite but where concomitant diffusion occurs. In this case, four of the five criteria mentioned above that relate to conservation of substitutional atomic sites are satisfied. [Copyright &y& Elsevier]
- Published
- 2004
- Full Text
- View/download PDF
5. Detection and characterization of junctions in a 2D image.
- Author
-
Bergevin, R. and Bubel, A.
- Subjects
TOPOLOGY ,IMAGING systems ,CURVATURE ,HYPOTHESIS - Abstract
A new junction characterization and validation method is proposed. Junction branches of volumetric objects are extracted at interest points in a 2D image, using a topologically constrained grouping process. This is followed by structural validation and position refinement of extracted junctions. An interesting feature of the proposed method is that all types of junctions are described uniformly and extracted using the same generic process. For instance, the size of the interest regions is kept constant despite local variations in contour density and curvature. Validation rate of real junctions is high and most false hypotheses are properly rejected. An experimental evaluation illustrates the capabilities of the proposed method in demanding situations. [Copyright &y& Elsevier]
- Published
- 2004
- Full Text
- View/download PDF
6. Hiérarchisation et visualisation multirésolution de résultats issus de codes de simulation
- Author
-
Vivodtzev, Fabien, Virtual environments for animation and image synthesis of natural objects (EVASION), Laboratoire d'informatique GRAphique, VIsion et Robotique de Grenoble (GRAVIR - IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Université Joseph-Fourier - Grenoble I, Georges-Pierre BONNEAU(Georges-Pierre.Bonneau@imag.fr), and Vivodtzev, Fabien
- Subjects
topological criteria ,critères topologiques ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Visualisation ,computer graphics ,volumetric simplification ,multirésolution ,simulation-visualization coupling ,informatique graphique ,[INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation ,[INFO.INFO-HC]Computer Science [cs]/Human-Computer Interaction [cs.HC] ,[INFO.INFO-HC] Computer Science [cs]/Human-Computer Interaction [cs.HC] ,couplage simulation-visualisation ,simplification volumique ,Visualization - Abstract
Numerical simulations generate large amounts of data that is far greater than the available resources on a workstation and it is unlikely that future developments of resource technology will be able to keep up with the growing demand. The finite element meshes supporting these simulations are normally composed of several millions of volumetric cells having embedded sub-structures of varying dimensions (surfaces and linear features) such as thin material-boundary layers. Postprocessing this large data in order to reduce the required amount of data needed to represent it allows a user to visualize and manipulate the data interactively on a single workstation. However, existing tools in scientific visualization do not allow or only partially reach the interactive exploration goals for this type of data (i.e., large number of cells, sub-structures, thin layers . . .). The dissertation presents two main steps for interactively rendering large data ; a postprocessing and visualization step. The postprocessing step uses an approach having hierarchical organization of data in order to construct a multiresolution representation allowing subsequent interactive visualization. This step is based on a mesh simplification algorithm that uses iterative edge collapses while preserving both mesh topology and the topology of all embedded sub-structures. The robust topological criteria introduced in this work are derived from theoretical notions in algebraic topology. The visualization step uses the multiresolution representation produced in the first step to speed up rendering time of the data. In a progressive, invertible and local way, the method adapts dynamically to the required resolution, specified by the user, and the hardware resources available. This dissertation illustrates the application of these techniques of hierarchical organization and visualization on data from various fields, particularly on data obtained from electromagnetic simulations by the CEA/CESTA., Les simulations numériques génèrent une quantité de résultats disproportionnée par rapport aux moyens d'exploitation, sans espoir d'atténuation à terme. Les maillages supportant ces simulations, sont composés de plusieurs dizaines de millions de cellules volumiques avec, plus spécifiquement, des sous-structures imbriquées de différentes dimensions (surfaciques et linéiques) et des couches minces de matériaux. En phase de post-traitement, un utilisateur devrait être capable de visualiser et de manipuler ces données, à temps interactif, sur sa propre machine d'exploitation. Cependant, les outils existants en visualisation scientifique ne permettent pas ou que partiellement d'atteindre les objectifs souhaités avec ce type de données (grand nombre de mailles, sous-structures, couches minces, . . .).Dans cette thèse, une approche par hiérarchisation des données est proposée afin de construire une représentation multirésolution autorisant la visualisation interactive d'une grande quantité d'information. L'étape de hiérarchisation est basée sur un algorithme de simplification de maillages, par contractions itératives d'arêtes, préservant à la fois la topologie du maillage et celle de toutes les sous-structures imbriquées. Les critères topologiques robustes introduits dans ces travaux, s'appuient sur des notions théoriques en topologie algébrique. L'étape de visualisation utilise la représentation multirésolution pour accélérer l'affichage des résultats. De façon progressive, inversible et locale, l'utilisateur modifie dynamiquement la résolution selon ses besoins et les ressources matérielles dont il dispose.Cette thèse illustre la mise en oeuvre de ces techniques de hiérarchisation et de visualisation dans de nombreux domaines d'applications notamment dans le cadre d'exploitation de résultats issus de simulations en électromagnétismedu CEA/CESTA.
- Published
- 2005
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.