1. Deformation Monitoring and Analysis of Baige Landslide (China) Based on the Fusion Monitoring of Multi-Orbit Time-Series InSAR Technology.
- Author
-
Ye, Kai, Wang, Zhe, Wang, Ting, Luo, Ying, Chen, Yiming, Zhang, Jiaqian, and Cai, Jialun
- Abstract
Due to the limitations inherent in SAR satellite imaging modes, utilizing time-series InSAR technology to process single-orbit satellite image data typically only yields one-dimensional deformation information along the LOS direction. This constraint impedes a comprehensive representation of the true surface deformation of landslides. Consequently, in this paper, after the SBAS-InSAR and PS-InSAR processing of the 30-view ascending and 30-view descending orbit images of the Sentinel-1A satellite, based on the imaging geometric relationship of the SAR satellite, we propose a novel computational method of fusing ascending and descending orbital LOS-direction time-series deformation to extract the landslide's downslope direction deformation of landslides. By applying this method to Baige landslide monitoring and integrating it with an improved tangential angle warning criterion, we classified the landslide's trailing edge into a high-speed, a uniform-speed, and a low-speed deformation region, with deformation magnitudes of 7~8 cm, 5~7 cm, and 3~4 cm, respectively. A comparative analysis with measured data for landslide deformation monitoring revealed that the average root mean square error between the fused landslide's downslope direction deformation and the measured data was a mere 3.62 mm. This represents a reduction of 56.9% and 57.5% in the average root mean square error compared to the single ascending and descending orbit LOS-direction time-series deformations, respectively, indicating higher monitoring accuracy. Finally, based on the analysis of landslide deformation and its inducing factors derived from the calculated time-series deformation results, it was determined that the precipitation, lithology of the strata, and ongoing geological activity are significant contributors to the sliding of the Baige land-slide. This method offers more comprehensive and accurate surface deformation information for dynamic landslide monitoring, aiding relevant departments in landslide surveillance and management, and providing technical recommendations for the fusion of multi-orbital satellite LOS-direction deformations to accurately reconstruct the true surface deformation of landslides. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF