1. 'Rhythmite', Ca 29 (SiO 4) 8 Cl 26 , an Anthropogenic Phase from the Chelyabinsk Coal Basin (Ural, Russia) with a Complex Modular Structure Related to α-Ca 3 SiO 4 Cl 2 ('Albovite'): Crystal Structure, Raman Spectra, and Thermal Expansion.
- Author
-
Avdontceva, Margarita S., Zolotarev, Andrey A., Brazhnikova, Anastasia S., Bocharov, Vladimir N., Vlasenko, Natalia S., Rassomakhin, Mikhail A., and Krivovichev, Sergey V.
- Abstract
'Rhythmite', Ca29(SiO4)8Cl26, an anthropogenic calcium chloride silicate from the Chelyabinsk coal basin (South Ural, Russia), was investigated using chemical microprobe analysis, in situ single-crystal X-ray diffraction analysis (27–727 °C), and Raman spectroscopy. 'Rhythmite' is orthorhombic, Pnma: a = 17.0749(6), b = 15.1029(5), c = 13.2907(4) Å, and V = 3427.42(18) Å3 (R1 = 0.045). The crystal structure of 'rhythmite' consists of a porous framework formed by Ca-O bonds and SiO4 tetrahedra with additional Ca2+ cations and Cl− anions in the structure interstices. The framework is built up from multinuclear [Ca15(SiO4)4]14+ fundamental building blocks (FBBs) cut from the crystal structure of α-Ca3SiO4Cl2 ('albovite'). The FBBs are linked by sharing common Ca atoms to form a network with an overall pcu topology. The empirical chemical formula was calculated as Ca29.02(Si7.89Al0.05P0.05)Ʃ7.99O32Cl26 (on the basis of Cl + O = 58). 'Rhythmite' is stable up to 627 °C and expands slightly anisotropically (αmax/αmin = 1.40) in the ab and bc planes and almost isotropically in the ac plane (α33/α11 = 1.02) with the following thermal expansion coefficients (×106 °C−1): α11 = 14.6(1), α22 = 20.5(4), α33 = 15.0(3), and αV = 50.1(6) (room temperature). During expansion, the silicate tetrahedra remain relatively rigid with average bond length changes of less than 0.5%. A structural complexity analysis indicates that 'rhythmite' is complex, with IG,total = 920.313 (bits/u.c.), which significantly exceeds the average value of structural complexity for silicates and is caused by the modular framework construction and the presence of a large number of independent positions in the crystal structure. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF