Minna Ma, Akihiko Ito, Philippe Ciais, Andreas Schindlbacher, Danica Lombardozzi, David Wårlind, Yongjiu Dai, Shupeng Zhang, Xiuzhi Chen, Fabienne Maignan, Xingjie Lu, Weimin Ju, Timothy A. Quine, Wenping Yuan, Sebastian Lienert, Ying-Ping Wang, Jun Wang, Vladislav Bastrikov, Shihua Li, Haibo Lu, Mahdi Nakhavali, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ICOS-ATC (ICOS-ATC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modélisation des Surfaces et Interfaces Continentales (MOSAIC), National Key Research and Development Program of China, NKRDPC: 2018YFA0606104, Original content from this work may be used under the terms of the . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. National Science Fund for Distinguished Young Scholars of China 41925001 Fundamental Research Funds for the Central Universities 18lgpy09 19lgjc02 National Key Basic Research Program of China 2018YFA0606104 yes � 2021 The Author(s). Published by IOP Publishing Ltd Creative Commons Attribution 4.0 license, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
The CO2 efflux from soil (soil respiration (SR)) is one of the largest fluxes in the global carbon (C) cycle and its response to climate change could strongly influence future atmospheric CO2 concentrations. Still, a large divergence of global SR estimates and its autotrophic (AR) and heterotrophic (HR) components exists among process based terrestrial ecosystem models. Therefore, alternatively derived global benchmark values are warranted for constraining the various ecosystem model output. In this study, we developed models based on the global soil respiration database (version 5.0), using the random forest (RF) method to generate the global benchmark distribution of total SR and its components. Benchmark values were then compared with the output of ten different global terrestrial ecosystem models. Our observationally derived global mean annual benchmark rates were 85.5 ± 40.4 (SD) Pg C yr−1 for SR, 50.3 ± 25.0 (SD) Pg C yr−1 for HR and 35.2 Pg C yr−1 for AR during 1982–2012, respectively. Evaluating against the observations, the RF models showed better performance in both of SR and HR simulations than all investigated terrestrial ecosystem models. Large divergences in simulating SR and its components were observed among the terrestrial ecosystem models. The estimated global SR and HR by the ecosystem models ranged from 61.4 to 91.7 Pg C yr−1 and 39.8 to 61.7 Pg C yr−1, respectively. The most discrepancy lays in the estimation of AR, the difference (12.0–42.3 Pg C yr−1) of estimates among the ecosystem models was up to 3.5 times. The contribution of AR to SR highly varied among the ecosystem models ranging from 18% to 48%, which differed with the estimate by RF (41%). This study generated global SR and its components (HR and AR) fluxes, which are useful benchmarks to constrain the performance of terrestrial ecosystem models.