1. Mechanochemical Synthesis and DC Electrical Conductivity of PANI-Based MWCNT Containing Nanocomposites with Te0 and Bi2Te3 Thermoelectric Nanophase
- Author
-
Anna V. Zhmurova, Galina F. Prozorova, and Marina V. Zvereva
- Subjects
PANI-based nanothermoelectrics ,polymer nanocomposite ,tellurium and bismuth telluride nanoparticles ,mechanochemical synthesis ,electrical conductivity ,Arrhenius model ,Chemistry ,QD1-999 - Abstract
Nowadays, the search for the coupled polymer nanocomposite thermoelectrics that exhibit a high value of thermoelectric figure of merit (ZT) and similar behaviour of physical properties for the use as legs of thermoelectric cells is a current challenge. The direct current (DC) conductivity is one of the three important components of thermoelectric figure of merit. The aim of this study was to obtain PANI-based nanothermoelectrics with Te0 and Bi2Te3 nanoparticles and MWCNT by mechanochemical methodology and to investigate the dependency of their DC electrical conductivity on temperature in the 298–353 K range using the Arrhenius and Mott’s variable range hopping (VRH) models. Inorganic Te0 and Bi2Te3 nanoparticles were pre-synthesized by the available and environmentally friendly method using a commercial tellurium powder. The samples obtained were characterized by X-ray diffractometry (XRD), IR and UV-Vis spectroscopy. The XRD study of ES-PANI/Te0 (4.4 wt% Te0) and ES-PANI/Bi2Te3 (2.9 wt% Bi2Te3) nanocomposites found that the nanoparticle average size was 32 nm and 17 nm, respectively. The DC conductivity study of the samples with different nanophase content (2.1, 4.4, 10.2 wt% Te0, 1.5, 2.9, 7.3 wt% Bi2Te3, 1.5 wt% MWCNT) by the two points measurement method reveals the following: (a) the presence of inorganic nanophase reduces the conductivity compared to the matrix, (b) the addition of MWCNT in ES-PANI increases its electrical conductivity, (c) the conductivity of ES-PANI/Te0 as well as ES-PANI/Bi2Te3 nanocomposite rises with the increasing inorganic nanophase content, (d) the observed increase in the electrical conductivity of MWCNT-based nanocomposites with increasing inorganic nanophase content is interrupted by a characteristic area of decrease in its value at average values of inorganic nanoparticles content (at Te0 content of 4.4 wt%, at Bi2Te3 content of 2.9 wt%), (e) a similar DC conductivity behaviour in ES-PANI/Te0—ES-PANI/Bi2Te3 and ES-PANI/Te0-MWCNT—ES-PANI/Bi2Te3-MWCNT nanocomposite pairs is observed.
- Published
- 2023
- Full Text
- View/download PDF