1. The HHL algorithm: Implementation and research directions.
- Author
-
Sambhaje, Varsha and Chaurasia, Anju
- Abstract
Linear systems of equations lie at the heart of numerous scientific and engineering challenges. In cutting-edge arena like artificial intelligence, machine learning and neuro-computation, these systems serve as a fundamental tool for mathematical modeling. Classical algorithms for solving linear systems have been extensively developed and forms the backbone of diverse applications across various scientific disciplines. While classical algorithms exist for solving linear systems, they often encounter limitations termed "NP-completeness" as data complexity increases. The emerging field of quantum computing offers a revolutionary approach to deal with these kinds of problems. The Harrow–Hassidim–Lloyd (HHL) algorithm tackles these challenges and opens new avenues for research. This study delves into the contemporary effectiveness of the HHL algorithm to address systems of linear equations. By examining recent research in quantum machine learning, we aim to assess the HHL algorithm's potential to revolutionize the process of optimizing hyperparameters for machine learning models, resulting in increased efficiency and cost savings. This paper meticulously analyzes the HHL algorithm and explores its evolution from conception to the latest advancements. A comprehensive examination of the HHL algorithm, including its evolution over time, is thoroughly explored. The investigation delves into the potential challenges and limitations that might hinder the practical deployment of the HHL algorithm. Identifying these roadblocks will pave the way for future research and development efforts. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF