1. Stability of One-Step Spray-on Splint for Lower Extremity Fractures During Splinting, MEDEVAC, and Impact.
- Author
-
Hobayan, C Grace P, Bates, Nathaniel A, Heyniger, John, Alzouhayli, Kenan, Piscitani, Franco, Haider, Clifton R, Felton, Christopher, Groth, Adam T, and Martin, Kevin D
- Subjects
- *
WHOLE-body vibration , *ANATOMICAL planes , *LINEAR acceleration , *MILITARY personnel , *FIBULA , *SPLINTS (Surgery) - Abstract
Introduction Military transport can induce whole-body vibrations, and combat almost always involves high impact between lower extremities and the ground. Therefore, robust splinting technology is necessary for lower extremity fractures in these settings. Our team compared a novel one-step spray-on foam splint (FastCast) to the current military standard structured aluminum malleable (SAM) splint. Materials and Methods Ten cadaveric specimens were subjected to complete tibia/fibula osteotomy. Specimens were fitted with custom accelerometer and gyroscope sensors superior and inferior to the fracture line. Each specimen underwent fracture and splinting from a standard of care SAM splint and an experimental FastCast spray foam splint in a randomized order. Each specimen was manually transported to an ambulance and then released from a 1 meter height to simulate impact. The custom sensors recorded accelerations and rotations throughout each event. Repeated-measures Friedman tests were used to assess differences between splint method within each event and between sensors within each splint method. Results During splinting, overall summation of change and difference of change between sensors for accelerations and rotations were greater for SAM splints than FastCast across all axes (P ≤ 0.03). During transport, the range of acceleration along the linear superior/inferior axis was greater for SAM splint than FastCast (P = 0.02), as was the range of rotation along the transverse plane (P < 0.01). On impact, the summation of change observed was greater for SAM splint than FastCast with respect to acceleration and rotation on the posterior/anterior and superior/inferior axes (P ≤ 0.03), and the cumulative difference between superior and inferior sensors was greater for SAM than FastCast with respect to anterior-axis rotation (P < 0.05). Conclusion FastCast maintains stabilization of fractured lower extremities during transport and impacts to a significantly greater extent than SAM splints. Therefore, FastCast can potentially reduce the risk of fracture complications following physical stressors associated with combat and extraction. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF