Featured Application: (1) Static stiffness modelling methods are classified and summarized. Each method is studied with regards to algorithms, implementation, and limitations; (2) A single degree of freedom and multiple degrees of freedom are proposed to describe the modelling methods in the joint space. (3) Regarding the relationship between external force and deformation, linear and nonlinear modelling methods are discussed. Due to their high flexibility, large workspace, and high repeatability, industrial robots are widely used in roughing and semifinishing fields. However, their low machining accuracy and low stability limit further development of industrial robots in the machining field, with low stiffness being the most significant factor. The stiffness of industrial robots is affected by the joint deformation, transmission mechanism, friction, environment, and coupling of these factors. Moreover, the stiffness of a robot has a nonlinear distribution throughout the workspace, and external forces during processing cause irregular deviations of the robot, thereby affecting the machining accuracy and surface quality of the workpiece. Many scholars have researched identifying the stiffness of industrial robots and have proposed methods for improving the performance of industrial robots, mainly by optimizing the body structure of the robot and compensating for deformation errors with stiffness models. This paper reviews recent research on the stiffness modelling of industrial robots, which can be broadly classified as finite element analysis (FEA), matrix structure analysis (MSA), and virtual joint modelling (VJM) methods. Each method is studied from three aspects: algorithms, implementation, and limitations. In addition, common measurement techniques have been introduced for measuring deformation. Further research directions are also discussed. [ABSTRACT FROM AUTHOR]