1. Understanding the Spatiotemporal Variability of Tropical Orographic Rainfall Using Convective Plume Buoyancy
- Author
-
Nicolas, Quentin and Boos, William R
- Subjects
Earth Sciences ,Atmospheric Sciences ,Convection ,Orographic effects ,Stationary waves ,Subseasonal variability ,Oceanography ,Geomatic Engineering ,Meteorology & Atmospheric Sciences ,Atmospheric sciences ,Climate change science - Abstract
Mechanical forcing by orography affects precipitating convection across many tropical regions, but controls on the intensity and horizontal extent of the orographic precipitation peak and rain shadow remain poorly understood. A recent theory explains this control of precipitation as arising from modulation of lower-tropospheric temperature and moisture by orographic mechanical forcing, setting the distribution of convective rainfall by controlling parcel buoyancy. Using satellite and reanalysis data, we evaluate this theory by investigating spatiotemporal precipitation variations in six mountainous tropical regions spanning South and Southeast Asia, and the Maritime Continent. We show that a strong relationship holds in these regions between daily precipitation and a measure of convective plume buoyancy. This measure depends on boundary layer thermodynamic properties and lower-free-tropospheric moisture and temperature. Consistent with the theory, temporal variations in lower-free-tropospheric temperature are primarily modulated by orographic mechanical lifting through changes in cross-slope wind speed. However, winds directed along background horizontal moisture gradients also influence lower-tropospheric moisture variations in some regions. The buoyancy measure is also shown to explain many aspects of the spatial patterns of precipitation. Finally, we present a linear model with two horizontal dimensions that combines mountain wave dynamics with a linearized closure exploiting the relationship between precipitation and plume buoyancy. In some regions, this model skillfully captures the spatial structure and intensity of rainfall; it underestimates rainfall in regions where time-mean ascent in large-scale convergence zones shapes lower-tropospheric humidity. Overall, these results provide new understanding of fundamental processes controlling subseasonal and spatial variations in tropical orographic precipitation.
- Published
- 2024