1. Multiscale Spatiotemporal Dynamics of Drought within the Yellow River Basin (YRB): An Examination of Regional Variability and Trends.
- Author
-
Jin, Lei, Chen, Shaodan, and Liu, Mengfan
- Subjects
DROUGHT management ,DROUGHTS ,WATERSHEDS ,CLIMATE extremes ,TIME series analysis ,AGRICULTURAL productivity ,ECOSYSTEMS ,TREND analysis - Abstract
Drought, as a recurring extreme climatic event, inflicts diverse impacts on ecological systems, agricultural productivity, water resources, and socio-economic progress globally. Discerning the drought patterns within the evolving environmental landscape of the Yellow River Basin (YRB) is imperative for enhancing regional drought management and fostering ecological conservation alongside high-quality development. This study utilizes meteorological drought indices, the Standardized Precipitation Evapotranspiration Index (SPEI) and the self-calibrating Palmer Drought Severity Index (scPDSI), for a detailed spatiotemporal analysis of drought conditions. It examines the effectiveness of these indices in the basin's drought monitoring, offering a comprehensive insight into the area's drought spatiotemporal dynamics. The findings demonstrate the following: (1) SPEI values exhibit distinct fluctuation patterns at varying temporal scales, with more pronounced fluctuations at shorter scales. Drought years identified via the 12-month SPEI time scale include 1965, 1966, 1969, 1972, 1986, 1997, 1999, 2001, and 2006. (2) A modified Mann–Kendall (MMK) trend test analysis of the scPDSI time series reveals a worrying trend of intensifying drought conditions within the basin. (3) Correlation analysis between SPEI and scPDSI across different time scales yields correlation coefficients of 0.35, 0.54, 0.69, 0.76, and 0.62, highlighting the most substantial correlation at an annual scale. Spatial correlation analysis conducted between SPEI and scPDSI across various scales reveals that, within diverse temporal ranges, the correlation peaks at a 12-month time scale, with subsequent prominence observed at 6 and 24 months. This observed pattern accentuates the applicability of scPDSI in the monitoring of medium- to long-term drought phenomena. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF