1. New and Potent Quinuclidine-Based Antimicrobial Agents
- Author
-
Andreja Radman Kastelic, Renata Odžak, Iskra Pezdirc, Karlo Sović, Tomica Hrenar, Ana Čipak Gašparović, Mirjana Skočibušić, and Ines Primožič
- Subjects
antimicrobial potency ,quinuclidinium oximes ,gram-positive and gram-negative bacteria ,multi-way analysis ,Organic chemistry ,QD241-441 - Abstract
Developing new antibiotics is currently very important since antibiotic resistance is one of the biggest problems of global health today. In the search for a new class of potential antimicrobial agents, ten new compounds were designed and synthesized based on the quinuclidinium heterocyclic core and the oxime functional group. The antimicrobial activity was assessed against a panel of representative gram-positive and gram-negative bacteria. All compounds demonstrated potent activity against the tested microorganisms, with the minimum inhibitory concentration (MIC) values ranging from 0.25 to 256.00 μg/mL. Among the tested compounds, two quaternary compounds, para-N-chlorobenzyl and meta-N-bromobenzyl quinuclidinium oximes, displayed the most potent and broad-spectrum activity against both gram-positive and gram-negative bacterial strains (MIC values from 0.25 to 4.00 μg/mL), with the lowest value for the important multidrug resistant gram-negative pathogen Pseudomonas aeruginosa. In the case of Klebsiella pneumoniae, activity of those compounds are 256-fold and 16-fold better than gentamicin, respectively. MTT assays showed that compounds are nontoxic for human cell lines. Multi-way analysis was used to separately reduce dimensionality of quantum chemical data and biological activity data to obtain a regression model and the required parameters for the enhancement of biological activity.
- Published
- 2019
- Full Text
- View/download PDF