1. Proline Metabolism in WHO G4 Gliomas Is Altered as Compared to Unaffected Brain Tissue.
- Author
-
Sawicka, Magdalena M., Sawicki, Karol, Jadeszko, Marek, Bielawska, Katarzyna, Supruniuk, Elżbieta, Reszeć, Joanna, Prokop-Bielenia, Izabela, Polityńska, Barbara, Jadeszko, Mateusz, Rybaczek, Magdalena, Latoch, Eryk, Gorbacz, Krzysztof, Łysoń, Tomasz, and Miltyk, Wojciech
- Subjects
- *
PROLINE metabolism , *BRAIN , *GLIOMAS , *CELL physiology , *RESEARCH funding , *TUMOR grading - Abstract
Simple Summary: Proline metabolism has been found to play an important role in neoplasms, but little is known about proline in gliomas or in the normal brain. This work investigates how the metabolism of proline in the brain and in gliomas of WHO grade 4 (GG4) may differ. A total of 20 pairs of samples were studied, consisting of both tumor and unaffected brain tissue, partially removed to make a surgical corridor. The levels of proline oxidase/proline dehydrogenase (POX/PRODH), Δ1-pyrroline-5-carboxylate reductases (PYCR1/2/3), prolidase (PEPD), and metalloproteinase-2 and -9 (MMP-2 and MMP-9) were measured. Proline concentration was evaluated. GG4 levels of POX/PRODH were found to be lower, while PYCR1, PEPD, and MMPs were significantly higher than in brain tissue. In GG4, proline concentration was 358% higher. The results confirm changes in proline metabolism in GG4, with a low-POX/PRODH/high-PYCR pattern like that in other neoplasms. High levels of PEPD and MMPs are in keeping with GG4 aggressiveness. Proline metabolism has been identified as a significant player in several neoplasms, but knowledge of its role in gliomas is limited despite it providing a promising line of pursuit. Data on proline metabolism in the brain are somewhat historical. This study aims to investigate alterations of proline metabolism in gliomas of WHO grade 4 (GG4) in the context of the brain. A total of 20 pairs of samples were studied, consisting of excised tumor and unaffected brain tissue, obtained when partial brain resection was required to reach deep-seated lesions. Levels of proline oxidase/proline dehydrogenase (POX/PRODH), Δ1-pyrroline-5-carboxylate reductases (PYCR1/2/3), prolidase (PEPD), and metalloproteinases (MMP-2, MMP-9) were assessed, along with the concentration of proline and proline-related metabolites. In comparison to normal brain tissue, POX/PRODH expression in GG4 was found to be suppressed, while PYCR1 expression and activity of PEPD, MMP-2, and -9 were upregulated. The GG4 proline concentration was 358% higher. Hence, rewiring of the proline metabolism in GG4 was confirmed for the first time, with a low-POX/PRODH/high-PYCR profile. High PEPD and MMPs activity is in keeping with GG4-increased collagen turnover and local aggressiveness. Further studies on the mechanisms of the interplay between altered proline metabolism and the GG4 microenvironment are warranted. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF