1. Molecular mechanisms of the assembly and function of BBSome
- Author
-
Prasai, Avishek, Huranová, Martina, Varga, Vladimír, and Bosáková, Michaela
- Subjects
fluorescenční mikroskopie ,FCS ,primární cilie ,primary cilia ,aktin ,Rho GTPases ,BBSome ,actin ,BBSom ,FRAP ,Rho GTPázy ,fluorescence microscopy - Abstract
Bardet Biedl syndrome is a genetic disorder caused by the dysfunction of the BBSome, an octameric cargo adaptor protein complex. The BBSome facilitates the transport of signaling receptors into and out of the primary cilium, a microtubule based sensory organelle of the cell. The first part of this thesis focuses on the elucidation of the assembly of the BBSome in living cells. We generated a library of human and mouse cells lines deficient in the individual BBSome subunits and transduced them with the other YFP tagged subunits. We employed biochemical assays, immunofluorescence and quantitative fluorescence microscopy techniques to analyze the individual steps in the BBSome assembly pathway. We revealed that the BBSome assembly occurs sequentially in spatially regulated steps. We showed that BBS4 nucleates the assembly of a pre-BBSome at the pericentriolar satellites. The translocation of the pre-BBSome to the ciliary base is facilitated by BBS1. We also revealed that in a BBS chaperonin deficient cell line, BBS12 KO cells, a small fraction of the BBSome and/or BBSome sub-complexes are still able to form and localize to the cilium. This could suggest that the BBS chaperonins might act later in the BBSome assembly pathway providing a means for quality control for the BBSome. Ciliary ectocytosis...
- Published
- 2023