1. HEAT TRANSFER PERFORMANCE OF AN Al2O3-WATER-METHANOL NANOFLUID IN A PLATE HEAT EXCHANGER.
- Author
-
SRINIVASAN, PERIASAMY MANIKANDAN, CHINNUSAMY, PRADEEP KUMAR, THANGAMANI, RAGHUL, PALANIRAJ, SURIYA, RAVICHANDRAN, PRANESH, KARUPPASAMY, SURYA, and SANMUGAM, YOKESHWARAN
- Subjects
- *
PLATE heat exchangers , *HEAT transfer , *HEAT convection , *HEAT transfer coefficient , *NANOFLUIDS - Abstract
A plate heat exchanger is one of the smallest and most efficient heat exchangers on the market. This experiment aims to assess the performance of methanol-water as a base fluid in a plate heat exchanger that affects the heat transfer performance. For this study, aluminum oxide (Al2O3) nanoparticle was used in various ratios (0.25, 0.5, and 0.75 vol. %) in a base fluid (10 vol.% methanol & 90 vol.% water) to prepare a nanofluid. At two different temperatures, such as 55 °C and 60 °C, with varying flow rates (2 to 8 L/min) and varying nanoparticle concentrations (0.25 to 0.75%), thermo physical characteristics and convective heat transfer studies were performed, and the results are presented. The overall inference was that there was a notable enhancement in the hot side, cold side, and overall heat transfer coefficient by the combination of Al2O3 nanoparticle and methanolwater-based fluid. It was noted that utilizing Al2O3/methanol-water nanofluid could significantly reduce the temperature gradient in the heat exchanger and improve its performance. Maximum hot fluid coefficient of 4300 W/m²°C, cold fluid coefficient of 4600 W/m²°C, and overall coefficient of 2200 W/m²°C were noted for 0.75 vol.% nanoparticle concentration and at a flow rate of 8 L/min. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF