RESUMEN Debido a su naturaleza anfifílica y enorme diversidad estructural, los lípidos son moléculas que, una vez empaquetadas en fase acuosa, forman membranas bilamelares que poseen propiedades electromecánicas de gran relevancia para la célula. En bacterias y otros microorganismos patógenos, el estudio de los factores que determinan la integridad de sus membranas resulta crucial para el desarrollo de antibióticos de última generación, ya que el uso indiscriminado de antibióticos convencionales como la penicilina y la estreptomicina ha favorecido el desarrollo de resistencia bacteriana en una gran cantidad de géneros patogénicos. Esto ha llevado a reforzar la investigación para encontrar alternativas terapéuticas más efectivas y menos convencionales. El descubrimiento de péptidos y lipopéptidos antimicrobianos naturales ha llamado poderosamente la atención debido a que, gracias a sus interacciones con las membranas biológicas, facilitan la desestabilización de la integridad de las bicapas mediante formación de poros acuosos y dispersión de la interfase acuosa, entre otras acciones. Estos efectos dependen directamente de la capacidad que tienen estas biomoléculas de actuar de forma selectiva en membranas de mamíferos, plantas, hongos y diversos tipos de bacterias. La actividad de estos péptidos depende directamente de las propiedades mecánicas y electrostáticas de las membranas, siempre en función de su composición lipídica. Entender estos fenómenos a nivel de la nanoescala, podría contribuir al diseño de estrategias para el desarrollo racional de agentes terapéuticos con gran potencial para eludir los mecanismos de resistencia bacteriana asociados al uso de antibióticos convencionales. ABSTRACT Due to their amphiphilic nature and huge structural diversity, lipids are molecules that, once packed in the aqueous phase, form bilamellar membranes that have electromechanical properties of great relevance for the cell. In bacteria and other pathogenic microorganisms, the study of factors that determine the integrity of their membranes is crucial for the development of next-generation antibiotics since the indiscriminate use of conventional antibiotics such as penicillin and streptomycin has favored the development of resistance bacteria in many pathogenic genera. This has led to reinforce research to find more effective and less conventional therapeutic alternatives. The discovery of natural antimicrobial peptides and lipopeptides has attracted great attention because, thanks to their interactions with biological membranes, they facilitate the destabilization of bilayer integrity through the formation of aqueous pores and dispersion of the aqueous interface, among other actions. These effects depend directly on the ability of these biomolecules to act selectively on the membranes of mammals, plants, fungi, and several types of bacteria. The activity of these peptides directly depends on the mechanical and electrostatic properties of the membranes, always depending on their lipid composition. Understanding these phenomena at the nanoscale level could contribute to the design of strategies for the rational development of therapeutic agents with great potential to circumvent bacterial resistance mechanisms associated with the use of conventional antibiotics., {"references":["Gaynes R. The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use. Emerg Infect Dis J [Internet]. 2017;23(5):849. Available from: https://wwwnc.cdc.gov/eid/article/23/5/16-1556_article","Castle SS. Penicillins. In: Enna SJ, Bylund DBBTTCPR, editors. New York: Elsevier; 2007. p. 1–3. Available from: https://www.sciencedirect.com/science/article/pii/B9780080552323610116","Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med [Internet]. 2004;10(12):S122–9. Available from: https://doi.org/10.1038/nm1145","Abd El-Wahed AA, Khalifa SAM, Sheikh BY, Farag MA, Saeed A, Larik FA, et al. Chapter 13 - Bee Venom Composition: From Chemistry to Biological Activity. In: Atta-ur-Rahman BT-S in NPC, editor. Elsevier; 2019. p. 459–84. Available from: https://www.sciencedirect.com/science/article/pii/B9780444641816000139","Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol [Internet]. 2008;16(3):115–25. Available from: https://www.sciencedirect.com/science/article/pii/S0966842X08000383","Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Vol. 8, Biomolecules. 2018. Available from: https://www.mdpi.com/2218-273X/8/1/4","Balleza D, Alessandrini A, Beltrán García MJ. Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides. J Membr Biol [Internet]. 2019;252(2):131–57. Available from: https://doi.org/10.1007/s00232-019-00067-4","Baracchi D, Francese S, Turillazzi S. Beyond the antipredatory defence: Honey bee venom function as a component of social immunity. Toxicon [Internet]. 2011;58(6):550–7. Available from: https://www.sciencedirect.com/science/article/pii/S004101011100273X","Gruner SM. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc Natl Acad Sci [Internet]. 1985 Jun 1;82(11):3665–9. Available from: https://doi.org/10.1073/pnas.82.11.3665","Epand RM, D'Souza K, Berno B, Schlame M. Membrane curvature modulation of protein activity determined by NMR. Biochim Biophys Acta - Biomembr [Internet]. 2015;1848(1, Part B):220–8. Available from: https://www.sciencedirect.com/science/article/pii/S000527361400176X","Balleza D, Garcia-Arribas AB, Sot J, Ruiz-Mirazo K, Goñi FM. Ether- versus Ester-Linked Phospholipid Bilayers Containing either Linear or Branched Apolar Chains. Biophys J [Internet]. 2014;107(6):1364–74. Available from: https://www.sciencedirect.com/science/article/pii/S0006349514007814","Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, et al. A comprehensive classification system for lipids1. J Lipid Res [Internet]. 2005;46(5):839–61. Available from: https://www.sciencedirect.com/science/article/pii/S0022227520339687","Cornell CE, Mileant A, Thakkar N, Lee KK, Keller SL. Direct imaging of liquid domains in membranes by cryo-electron tomography. Proc Natl Acad Sci [Internet]. 2020 Aug 18;117(33):19713–9. Available from: https://doi.org/10.1073/pnas.2002245117","Bechinger B. Structure and Function of Membrane-Lytic Peptides. CRC Crit Rev Plant Sci [Internet]. 2004 May 1;23(3):271–92. Available from: https://doi.org/10.1080/07352680490452825","Rima M, Rima M, Fajloun Z, Sabatier J-M, Bechinger B, Naas T. Antimicrobial Peptides: A Potent Alternative to Antibiotics. Vol. 10, Antibiotics. 2021. Available from: https://www.mdpi.com/2079-6382/10/9/1095#","Mosgaard LD, Heimburg T. Lipid Ion Channels and the Role of Proteins. Acc Chem Res [Internet]. 2013 Dec 17;46(12):2966–76. Available from: https://doi.org/10.1021/ar4000604","Paterson DJ, Tassieri M, Reboud J, Wilson R, Cooper JM. Lipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes. Proc Natl Acad Sci [Internet]. 2017 Oct 3;114(40):E8324–32. Available from: https://doi.org/10.1073/pnas.1704489114","Raghuraman H, Chattopadhyay A. Melittin: a Membrane-active Peptide with Diverse Functions. Biosci Rep [Internet]. 2007 Aug 6;27(4–5):189–223. Available from: https://doi.org/10.1007/s10540-006-9030-z","Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta - Biomembr [Internet]. 1997;1327(1):119–30. Available from: https://www.sciencedirect.com/science/article/pii/S0005273697000515","Huang HW. DAPTOMYCIN, its membrane-active mechanism vs. that of other antimicrobial peptides. Biochim Biophys Acta - Biomembr [Internet]. 2020;1862(10):183395. Available from: https://www.sciencedirect.com/science/article/pii/S0005273620302376","Heerklotz H, Seelig J. Detergent-Like Action of the Antibiotic Peptide Surfactin on Lipid Membranes. Biophys J [Internet]. 2001;81(3):1547–54. Available from: https://www.sciencedirect.com/science/article/pii/S0006349501758080","Sur S, Romo TD, Grossfield A. Selectivity and Mechanism of Fengycin, an Antimicrobial Lipopeptide, from Molecular Dynamics. J Phys Chem B [Internet]. 2018;122(8):2219–26. Available from: http://europepmc.org/abstract/MED/29376372","Wu F-G, Jia Q, Wu R-G, Yu Z-W. Regional Cooperativity in the Phase Transitions of Dipalmitoylphosphatidylcholine Bilayers: The Lipid Tail Triggers the Isothermal Crystallization Process. J Phys Chem B [Internet]. 2011 Jul 7;115(26):8559–68. Available from: https://doi.org/10.1021/jp200733y","Ebenhan T, Gheysens O, Kruger HG, Zeevaart JR, Sathekge MM. Antimicrobial Peptides: Their Role as Infection-Selective Tracers for Molecular Imaging. Biomed Res Int. 2014;2014. Available from: https://www.hindawi.com/journals/bmri/2014/867381/","Balleza D. Mechanical properties of lipid bilayers and regulation of mechanosensitive function. Channels [Internet]. 2012 Jul 1;6(4):220–33. Available from: https://doi.org/10.4161/chan.21085","Afanasyeva EF, Syryamina VN, Dzuba SA. Communication: Alamethicin can capture lipid-like molecules in the membrane. J Chem Phys [Internet]. 2017 Jan 6;146(1):11103. Available from: https://doi.org/10.1063/1.4973703","Huang HW. Molecular mechanism of antimicrobial peptides: The origin of cooperativity. Biochim Biophys Acta - Biomembr [Internet]. 2006;1758(9):1292–302. Available from: https://www.sciencedirect.com/science/article/pii/S0005273606000411","Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol [Internet]. 2004 Jan 1;75(1):39–48. Available from: https://doi.org/10.1189/jlb.0403147","Gray DA, Wenzel M. More Than a Pore: A Current Perspective on the In Vivo Mode of Action of the Lipopeptide Antibiotic Daptomycin. Vol. 9, Antibiotics. 2020. Available from: https://www.mdpi.com/2079-6382/9/1/17","Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol [Internet]. 2005;6(6):551–7. Available from: http://europepmc.org/abstract/MED/15908936","Eeman M, Pegado L, Dufrêne YF, Paquot M, Deleu M. Influence of environmental conditions on the interfacial organisation of fengycin, a bioactive lipopeptide produced by Bacillus subtilis. J Colloid Interface Sci [Internet]. 2009;329(2):253–64. Available from: https://www.sciencedirect.com/science/article/pii/S0021979708012988","Harnois I, Maget-Dana R, Ptak M. Methylation of the antifungal lipopeptide iturin A modifies its interaction with lipids. Biochimie [Internet]. 1989;71(1):111–6. Available from: https://www.sciencedirect.com/science/article/pii/0300908489901405","Imura Y, Choda N, Matsuzaki K. Magainin 2 in Action: Distinct Modes of Membrane Permeabilization in Living Bacterial and Mammalian Cells. Biophys J [Internet]. 2008;95(12):5757–65. Available from: https://www.sciencedirect.com/science/article/pii/S0006349508819923","Hong J, Lu X, Deng Z, Xiao S, Yuan B, Yang K. How Melittin Inserts into Cell Membrane: Conformational Changes, Inter-Peptide Cooperation, and Disturbance on the Membrane. Vol. 24, Molecules. 2019. Available from: https://europepmc.org/article/MED/31067828","Lay C Le, Dridi L, Bergeron MG, Ouellette M, Fliss IL. Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination. J Med Microbiol [Internet]. 2016;65(2):169–75. Available from: http://europepmc.org/abstract/MED/26555543","Hsu S-TD, Breukink E, Tischenko E, Lutters MAG, de Kruijff B, Kaptein R, et al. The nisin–lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct Mol Biol [Internet]. 2004;11(10):963–7. Available from: https://doi.org/10.1038/nsmb830","Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, et al. Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II. Science (80- ) [Internet]. 2010 May 28;328(5982):1168–72. Available from: https://doi.org/10.1126/science.1185723","Heerklotz H, Seelig J. Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur Biophys J [Internet]. 2007;36(4):305–14. Available from: https://doi.org/10.1007/s00249-006-0091-5","Deleu M, Lorent J, Lins L, Brasseur R, Braun N, El Kirat K, et al. Effects of surfactin on membrane models displaying lipid phase separation. Biochim Biophys Acta - Biomembr [Internet]. 2013;1828(2):801–15. Available from: https://www.sciencedirect.com/science/article/pii/S0005273612003859"]}