1. Novel Insights on Obligate Symbiont Lifestyle and Adaptation to Chemosynthetic Environment as Revealed by the Giant Tubeworm Genome.
- Author
-
Oliveira, André Luiz de, Mitchell, Jessica, Girguis, Peter, and Bright, Monika
- Subjects
POGONOPHORA ,PHYSIOLOGICAL research ,RIFTIA pachyptila ,TUBE worms ,METABOLIC detoxification - Abstract
The mutualism between the giant tubeworm Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone has been extensively researched over the past 40 years. However, the lack of the host whole-genome information has impeded the full comprehension of the genotype/phenotype interface in Riftia. Here, we described the high-quality draft genome of Riftia , its complete mitogenome, and tissue-specific transcriptomic data. The Riftia genome presents signs of reductive evolution, with gene family contractions exceeding expansions. Expanded gene families are related to sulfur metabolism, detoxification, antioxidative stress, oxygen transport, immune system, and lysosomal digestion, reflecting evolutionary adaptations to the vent environment and endosymbiosis. Despite the derived body plan, the developmental gene repertoire in the gutless tubeworm is extremely conserved with the presence of a near intact and complete Hox cluster. Gene expression analyses establish that the trophosome is a multifunctional organ marked by intracellular digestion of endosymbionts, storage of excretory products, and hematopoietic functions. Overall, the plume and gonad tissues both in contact to the environment harbor highly expressed genes involved with cell cycle, programed cell death, and immunity indicating a high cell turnover and defense mechanisms against pathogens. We posit that the innate immune system plays a more prominent role into the establishment of the symbiosis during the infection in the larval stage, rather than maintaining the symbiostasis in the trophosome. This genome bridges four decades of physiological research in Riftia , whereas it simultaneously provides new insights into the development, whole organism functions, and evolution in the giant tubeworm. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF