1. Multi-Source Remote Sensing Data for Wetland Information Extraction: A Case Study of the Nanweng River National Wetland Reserve.
- Author
-
Yu, Hao, Li, Shicheng, Liang, Zhimin, Xu, Shengnan, Yang, Xin, and Li, Xiaoyan
- Subjects
- *
CARBON cycle , *WETLANDS monitoring , *PEARSON correlation (Statistics) , *FEATURE extraction , *REMOTE sensing , *WETLANDS - Abstract
Wetlands play a vital role in regulating the global carbon cycle, providing biodiversity, and reducing flood risks. These functions maintain ecological balance and ensure human well-being. Timely, accurate monitoring of wetlands is essential, not only for conservation efforts, but also for achieving Sustainable Development Goals (SDGs). In this study, we combined Sentinel-1/2 images, terrain data, and field observation data collected in 2020 to better understand wetland distribution. A total of 22 feature variables were extracted from multi-source data, including spectral bands, spectral indices (especially red edge indices), terrain features, and radar features. To avoid high correlations between variables and reduce data redundancy, we selected a subset of features based on recursive feature elimination (RFE) and Pearson correlation analysis methods. We adopted the random forest (RF) method to construct six wetland delineation schemes and incorporated multiple types of characteristic variables. These variables were based on remote sensing image pixels and objects. Combining red-edge features, terrain data, and radar data significantly improved the accuracy of land cover information extracted in low-mountain and hilly areas. Moreover, the accuracy of object-oriented schemes surpassed that of pixel-level methods when applied to wetland classification. Among the three pixel-based schemes, the addition of terrain and radar data increased the overall classification accuracy by 7.26%. In the object-based schemes, the inclusion of radar and terrain data improved classification accuracy by 4.34%. The object-based classification method achieved the best results for swamps, water bodies, and built-up land, with relative accuracies of 96.00%, 90.91%, and 96.67%, respectively. Even higher accuracies were observed in the pixel-based schemes for marshes, forests, and bare land, with relative accuracies of 98.67%, 97.53%, and 80.00%, respectively. This study's methodology can provide valuable reference information for wetland data extraction research and can be applied to a wide range of future research studies. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF