1. Advancing the Frontiers of Neuroelectrodes: A Paradigm Shift towards Enhanced Biocompatibility and Electrochemical Performance.
- Author
-
Wang, Qin, Liu, Yiyang, Zhang, Baolin, Dong, Jianghui, and Wang, Liping
- Subjects
- *
IRON oxide nanoparticles , *NICKEL-chromium alloys , *X-ray photoelectron spectroscopy , *BIOCOMPATIBILITY , *POLYETHYLENEIMINE , *INFRARED spectroscopy - Abstract
The aim of this study is the fabrication of unprecedented neuroelectrodes, replete with exceptional biological and electrical attributes. Commencing with the synthesis of polyethylene glycol and polyethyleneimine-modified iron oxide nanoparticles, the grafting of Dimyristoyl phosphatidylcholine was embarked upon to generate DMPC-SPION nanoparticles. Subsequently, the deposition of DMPC-SPIONs onto a nickel–chromium alloy electrode facilitated the inception of an innovative neuroelectrode–DMPC-SPION. A meticulous characterization of DMPC-SPIONs ensued, encompassing zeta potential, infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction analyses. Evaluations pertaining to hemolysis and cytotoxicity were conducted to ascertain the biocompatibility and biosafety of DMPC-SPIONs. Ultimately, a comprehensive assessment of the biocompatibility, electrochemical properties, and electrophysiological signal acquisition capabilities of DMPC-SPION neuroelectrodes was undertaken. These findings conclusively affirm the exemplary biocompatibility, electrochemical capabilities, and outstanding capability in recording electrical signals of DMPC-SPION neuroelectrodes, with an astounding 91.4% augmentation in electrode charge and a noteworthy 13% decline in impedance, with peak potentials reaching as high as 171 μV and an impressive signal-to-noise ratio of 15.92. Intriguingly, the novel DMPC-SPION neuroelectrodes herald an innovative pathway towards injury repair as well as the diagnosis and treatment of neurological disorders. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF